TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schroepfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Investigations on influencing the microstructure of additively manufactured Co‑Cr alloys to improve subsequent machining conditions N2 - Co-Cr alloys are frequently used for highly stressed components, especially in turbine and plant construction, due to their high resistance to thermal and mechanical stress, as well as to corrosive and abrasive loads. Furthermore, they are classified as difficult-to-cut materials because of their high strength and toughness as well as their low thermal conductivity. However, for Co, an increased cost and supply risk can be observed in recent years. Therefore, additive manufacturing (AM) offers significant economic advantages due to higher material efficiency regarding repair, modification, and manufacturing of such components. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. In addition, subsequent machining, particularly contour milling, is essential to generate the required complex contours and surfaces. Hence, additive and machining manufacturing processes need to be coordinated in a complementary way, especially due to additional challenges arising in milling of heterogeneous hard-to-cut microstructures. Recently, it has been shown that modern, hybrid cutting processes, such as ultrasonic-assisted milling (US), can improve the cutting situation. In this investigation, the Co-Cr initial alloy is additionally modified with Ti and Zr up to 1 wt% with the aim to enhance the homogeneity of the microstructure and, thus, the machinability. Hence the investigation includes finish milling tests of the AM components and the comparison of US and conventional machining. Both the modifications and the ultrasonic assistance exhibit a significant effect on the machining situation; for example US causes a higher surface integrity of the finish milled surfaces compared to conventional milling. T2 - International Congress on Welding, Additive Manufacturing and associated non-destructive testing CY - Online meeting DA - 08.06.2022 KW - Cobalt-chromium alloy KW - Additive manufacturing KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560917 SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-56091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Experimental and numerical characterization of hydrogen diffusion in thick-walled submerged arc welded joint of S420G2+M offshore steel grade N2 - Offshore wind turbines are an important goal in national energy strategies worldwide. Foundation structures are manufactured from submerged arc welded (SAW) plates with thicknesses up to 200 mm. In that connection, high-strength steels like the S420G2+M are more and more applied offering the possibility for increased stability and load-bearing capacity of the foundations. These offshore steel grades can show a susceptibility for delayed hydrogen assisted cold cracking of the weld joints. For that purpose, a minimum waiting time (MWT) of up to 48 h (dependent on applied standards) is recommended before non-destructive testing is allowed and conducted. But this concept is based on older steel grades that have been used for three or more decades. Nowadays, the metallurgical improvements (clean steels, proper rolling, and heat treatment) of base materials and well as welding consumables must be anticipated. Hence, the MWT concept should be critically discussed as it is assumed to be very conservative. For that reason, the focus of this study was to investigate the diffusion behavior in S420G2+M steel and its multi-layer SAW joint. Electrochemical permeation experiments were carried at room temperature. Boundary conditions were anticipated in terms of using different sample thicknesses. From the experimental data, hydrogen diffusion coefficients and absorbed diffusible hydrogen concentrations had been calculated. It was shown that hydrogen diffusion in the base material is increased compared to the weld metal. In addition, the sample thickness had a significant on the calculated diffusion coefficients. The minimum and maximum diffusion coefficients had been used for numerical modelling of the hydrogen diffusion in the welding joint. It became clear that a MWT must be always regarded together with a critical initial diffusible hydrogen concentration for the evaluation of a possible delayed cracking as diffusion times were mostly > 48 h due to the thick plates. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - Submerged arc welding KW - Diffusion KW - Minimum waiting time KW - Electrochemical permeation PY - 2022 SP - 1 EP - 11 CY - Ghent, Belgium AN - OPUS4-56075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Spatially resolved EDS, XRF and LIBS measurements of the chemical composition of duplex stainless steel welds: A comparison of methods N2 - Duplex stainless steels (DSS) are used in all industries where corrosion problems play a major role. Examples include the chemical industry, the food industry and shipping industries. DSS have a balanced phase ratio of ferrite (α) and austenite (γ). Unlike single-phase stainless steels, DSS combine the advantages of these and can therefore fit many industry requirements, such as weight saving or high mechanical strength. When these steels are welded, alloying elements can burn off and condense as thin layers on cold surface regions. This loss of chemical elements can lead to changes in the microstructure. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), chemical element distributions were visualized. The results were compared with those of conventional measurement methods, such as energy dispersive X-ray analysis (EDS) and X-ray fluorescence analysis (XRF), and the results from LIBS could be validated. LIBS is suitable as a fast, straightforward measurement method for producing line scans along the weld seam and provides spatially resolved information on accumulation phenomena of burned off alloying elements. LIBS is very well suited for the detection of sub-surface elements due to the exclusively superficial ablation of the material. In addition, the measurement method has been calibrated so that quantitative statements about element concentrations can also be made. T2 - EMSLIBS 2021 CY - Online Meeting DA - 25.11.2021 KW - LIBS KW - TIG welding KW - Duplex stainless steel KW - XRF KW - EDS PY - 2022 U6 - https://doi.org/10.1016/j.sab.2022.106439 SN - 0584-8547 VL - 193 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-54837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Mente, Tobias A1 - Richter, Tim A1 - Kannengießer, Thomas T1 - Characterization of Hydrogen Diffusion in Offshore Steel S420G2+M Multi-layer Submerged Arc Welded Joint N2 - As onshore installation capacity is limited, the increase in the number of offshore wind turbines (OWT) is a major goal. In that connection, the OWTs continuously increase in size and weight and demand adequate foundations concepts like monopiles or tripods. These components are typically manufactured from welded mild steel plates with thickness up to 200 mm. The predominant welding technique is submerged arc welding (SAW). In accordance with the standards, the occurrence of hydrogen-assisted cracking is anticipated by either a minimum waiting time (MWT, before non-destructive testing of the welded joint is allowed) at ambient or a hydrogen removal heat treatment (HRHT) at elevated temperatures. The effectiveness of both can be estimated by calculation of the diffusion time, i.e., diffusion coefficients. In this study, these coefficients are obtained for the first time for a thick-walled S420G2+M offshore steel grade and its multi-layer SAW joint. The electrochemical permeation technique at ambient temperature is used for the determination of diffusion coefficients for both the base material and the weld metal. The coefficients are within a range of 1025 to 1024 mm2/s (whereas the weld metal had the lowest) and are used for an analytical and numerical calculation of the hydrogen diffusion and the related MWT. The results showed that long MWT can occur, which would be necessary to significantly decrease the hydrogen concentration. Weld metal diffusion coefficients at elevated temperatures were calculated from hydrogen desorption experiments by carrier gas hot extraction. They are within a range of 1023 mm2/s and used for the characterization of a HRHT dwell-time. The analytical calculation shows the same tendency of long necessary times also at elevated temperatures. That means the necessary time is strongly influenced by the considered plate thickness and the estimation of any MWT/HRHT via diffusion coefficients should be critically discussed. T2 - European Congress and Exhibition on Advanced Materials and Process - Euromat 2021 CY - Online meeting DA - 13.09.2021 KW - Thick-walled KW - Hydrogen diffusion KW - Offshore KW - Steel KW - Submerged arc welding PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-544127 SN - 1059-9495 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-54412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, T. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Triaxial Residual Stress in Laser Powder Bed Fused 316L: Effects of Interlayer Time and Scanning Velocity N2 - The triaxial distribution of the residual stress in laser powder bed fused austenitic steel 316L was determined by X-ray and neutron diffraction. The residual stress analysis results were linked to the thermal history of the specimens, which were manufactured with varying inter-layer-times and scanning velocities. A clear link between the in-process temperature of the specimens and the residual stress was found, based on in-situ monitoring data. KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542620 SP - 1 EP - 13 PB - Wiley-VCH GmbH AN - OPUS4-54262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - In situ investigation of chemical composition during TIG welding in duplex stainless steels using Laser-Induced Breakdown Spectroscopy (LIBS) N2 - Many applications in industry require a material-to-material joining process of Duplex Stainless Steels (DSS). Therefore, it is essential to investigate the material’s properties during a welding process to control the weld quality. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), the chemical composition during the Tungsten Inert Gas (TIG) welding process of DSS could be monitored in situ. The chemical composition could be quantitatively measured using pre-established calibration curves. Although the surface temperature and the welding plasma have a high influence on the spectral intensities, reliable composition measurements were possible. The concentration of alloying elements could be mapped during the TIG welding process. T2 - 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - TIG welding KW - Duplex stainless steels PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542026 SN - 2666-3597 VL - 6 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Schaupp, Thomas A1 - Griesche, Axel A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hannemann, Andreas A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging N2 - While the problem of the identification of mechanisms of hydrogen assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. In this work, we show how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in literature, but this time using a non-destructive technique, we show that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, we deduce that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. We show that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and we deduce that a significant crack propagation can only be observed short before rupture. KW - 2101 duplex stainless steel KW - Hydrogen embrittlement KW - Synchrotron radiation KW - X-ray refraction KW - Computed tomography KW - Microcracking PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542811 SN - 1438-1656 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Diffraction-Based Residual Stress Characterization in Laser Additive Manufacturing of Metals N2 - Laser-based additive manufacturing methods allow the production of complex metal structures within a single manufacturing step. However, the localized heat input and the layer-wise manufacturing manner give rise to large thermal gradients. Therefore, large internal stress (IS) during the process (and consequently residual stress (RS) at the end of production) is generated within the parts. This IS or RS can either lead to distortion or cracking during fabrication or in-service part failure, respectively. With this in view, the knowledge on the magnitude and spatial distribution of RS is important to develop strategies for its mitigation. Specifically, diffraction-based methods allow the spatial resolved determination of RS in a non-destructive fashion. In this review, common diffraction-based methods to determine RS in laser-based additive manufactured parts are presented. In fact, the unique microstructures and textures associated to laser-based additive manufacturing processes pose metrological challenges. Based on the literature review, it is recommended to (a) use mechanically relaxed samples measured in several orientations as appropriate strain-free lattice spacing, instead of powder, (b) consider that an appropriate grain-interaction model to calculate diffraction-elastic constants is both material- and texture-dependent and may differ from the conventionally manufactured variant. Further metrological challenges are critically reviewed and future demands in this research field are discussed. KW - Laser-based additive manufacturing KW - Residual stress analysis KW - X-ray and neutron diffraction KW - Diffraction-elastic constants KW - Strain-free lattice spacing PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538054 VL - 11 IS - 11 SP - 1830 PB - MPDI CY - Basel AN - OPUS4-53805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - WAAM process influences on local microstructure and residual stresses in high-strength steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. Due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the special microstructure of high-strength steels is sensitive to cold cracking. For this reason, process- and material-related influences, as well as the design effects on residual stress formation, are being investigated in a project funded by the AiF (FOSTA P1380/IGF 21162 BG). This study focuses on determining the interactions between heat control during WAAM process, resulting hardness, microstructure, and residual stresses, analyzed by X-ray diffraction. Welding experiments using geometrically similar AM specimens show that, with regard to the heat input, the energy per unit length in particular leads to significantly affected cooling times and microstructures and causes pronounced localized effects in terms of residual stresses in the upper weld beads. T2 - 46th MPA-Seminar CY - Stuttgart, Germany DA - 12.10.2021 KW - Wire Arc Additive Manufacturing KW - High-strength structural steels KW - Vickers hardness KW - Residual stresses PY - 2021 VL - 46 SP - 296 EP - 306 PB - MPA-Stuttgart AN - OPUS4-53571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Schröder, Nina A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Hydrogen-Assisted Cracking in GMA Welding of High-Strength Structural Steel—A New Look into This Issue at Narrow Groove N2 - Modern arc processes, such as the modified spray arc (Mod. SA), have been developed for gas metal arc welding of high-strength structural steels with which even narrow weld seams can be welded. High-strength joints are subjected to increasingly stringent requirements in terms of welding processing and the resulting component performance. In the present work, this challenge is to be met by clarifying the influences on hydrogen-assisted cracking (HAC) in a high-strength structural steel S960QL. Adapted samples analogous to the self-restraint TEKKEN test are used and analyzed with respect to crack formation, microstructure, diffusible hydrogen concentration and residual stresses. The variation of the seam opening angle of the test seams is between 30° and 60°. To prevent HAC, the effectiveness of a dehydrogenation heat treatment (DHT) from the welding heat is investigated. As a result, the weld metals produced at reduced weld opening angle show slightly higher hydrogen concentrations on average. In addition, increased micro- as well as macro-crack formation can be observed on these weld metal samples. On all samples without DHT, cracks in the root notch occur due to HAC, which can be prevented by DHT immediately after welding. KW - High-strength structural steel KW - Gas metal arc welding KW - Diffusible hydrogen KW - Hydrogen-assisted cracking KW - TEKKEN KW - Residual stresses KW - Weld metal cracking PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527260 VL - 11 IS - 6 SP - 904 PB - MDPI CY - Basel AN - OPUS4-52726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Process-related influences and correlations in wire arc additive manufacturing of high-strength steels N2 - High-strength fine-grained structural steels have great potential for weight-optimized, efficient structures in many modern steel applications. Further advances in efficiency can be achieved through additive manufacturing and bionic design. Commercial high-strength filler materials for wire arc additive manufacturing (WAAM) are already provided by the consumable producers. Today, application would be strictly limited due to absence of quantitative findings or any guidelines for the industry regarding welding-related stresses and component safety during manufacturing and service. Hence, process- and material-related influences and design-related restraint conditions associated with formation of residual stresses and cold cracking risk are investigated. The aim is the accessibility of special WAAM self-restraining cold cracking tests and easy applicable processing recommendations, enabling an economical, fit-for-purpose and crack-safe WAAM of high-strength steels. This first study focuses on determination of interactions between WAAM process parameters, resulting layer geometry, microstructure and residual stresses, analyzed via X-ray diffraction. Defined reference specimens are automated welded using a special WAAM solid wire (yield strength >820 MPa). Geometric properties can be specifically adjusted by wire feed and welding speed, but cannot be varied arbitrarily, since a high heat input causes local overheating, inadmissible changes of microstructure and mechanical properties, defects and comparable high tensile residual stresses. T2 - 22. Werkstofftechnischen Kolloquium der TU Chemnitz CY - Online meeting DA - 24.03.2021 KW - Residual stresses KW - Additive Manufacturing KW - High-strength steel PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-533300 VL - 1147 SP - 012002 PB - IOP Publishing Ltd AN - OPUS4-53330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schroepfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas ED - da Silva, L. F. M. ED - Martins, P. A. F. ED - Reisgen, U. T1 - Nickel-Iron-Alloy Modification to Enhance Additively Welded Microstructure for Subsequent Milling N2 - The aerospace industry uses nickel–iron alloys, e.g., FeNi36, to create moulding tools for composite materials, since these alloys have a low coefficient of thermal expansion. Nickel–iron alloys are hard-to-cut materials. The moulding tools are large in size and involve complex structures, making them cost-intensive and difficult to manufacture. Thus, the focus is set on additive manufacturing, which can additionally enable the repair of components in order to eliminate local defects. However, the process usually results in a heterogeneous microstructure and anisotropic mechanical properties. As there is a high demand for a precise and exact fit of the precision moulds and the surface quality, the welded components must be subsequently machined. Additionally, inhomogeneous microstructure may lead to unstable cutting forces and conditions. Consequently, a modification of the microstructure morphology is achieved through specific alloy modifications in order to stabilise and improve the subsequent machining process. Therefore, titanium and zirconium are chosen as modification elements with a maximum 1% weight percent and are added to nickel–iron alloy powder. The elements are alloyed, and build-up welded by plasma-transferred-arcwelding. The resulting microstructure morphology of the welded wall structure and the machining properties are then determined. It can be shown that titanium has a significant effect on the structural morphology of the welded layers, as well as on the machining. KW - Alloy modification KW - Alloy 36 KW - Plasma-transferred arc welding KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SN - 978-3-030-95463-5 U6 - https://doi.org/10.1007/978-3-030-95463-5_6 SP - 85 EP - 99 PB - Springer CY - Cham AN - OPUS4-55484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Determination of residual stress evolution during repair welding of high-strength steel components N2 - During the assembly of steel structures, unacceptable weld defects may be found. An economical solution is local thermal gouging of the affected areas and re-welding. Due to high shrinkage restraints of repair weld and sur- rounding structure, high global and local welding stresses superimpose, and may lead to cracking and component failure, especially in connection with the degraded microstructure and mechanical properties of high-strength steels during the repair process. Component-related investigations of high-strength steels (FOSTA P1311/ IGF20162N) focus on welding residual stress evolution during local thermal gouging and rewelding. In this study, repair welding of S500MLO (EN 10225) is carried out using in-situ digital image correlation (DIC) and ex- situ X-ray diffraction (XRD) to analyse strains and stresses. Self-restrained slit specimen geometries were identified representing defined rigidity conditions of repair welds of real components, which were quantified using the restraint intensity concept. The specimens were rewelded with constant welding heat control and parameters. Weld specimens exhibited significantly increased transverse residual stresses with higher transverse restraint intensities, in the weld metal, and in the heat affected zone. Transverse stresses along the weld seam decrease at the weld seam ends leading to different stress state during gouging and welding. XRD analysis of the longitudinal and transverse local residual stresses after cooling to RT showed a good comparability with global DIC analyses. KW - Repair-welding KW - High-strength steels KW - X-ray diffraction KW - Digital image correlation KW - Residual stresses PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555672 SN - 2666-3597 VL - 6 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-55567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SP - 57 EP - 67 AN - OPUS4-55430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Wesling, V. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Modification of Co–Cr alloys to optimize additively welded microstructures and subsequent surface finishing N2 - Cobalt chromium alloys are often used in turbine and plant construction. This is based on their high thermal and mechanical stress resistance as well as their high wear resistance to corrosive and abrasive loads. However, cobalt is a cost-intensive material that is difficult to machine. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components in many sectors. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. As a result of the high stresses on the components and requirements for a high surface quality, a complementary use of additive and machining manufacturing processes is necessary. Thereby, Co–Cr alloys are extremely challenging for machining with geometrically defined cutting edges because of their low thermal conductivity combined with high strength and toughness. An approach to solve this problem is to refine and homogenise the microstructure. This is achieved by modifying the alloy with elements zirconium and hafnium, which are added up to a maximum of 1 wt.-%. A reduction of the process forces and stresses on the tool and work piece surface is also achievable via hybrid milling processes. There are already studies on the combined use of additive and machining manufacturing processes based on laser technology. However, knowledge based on powder and wire-based arc processes is important, as these processes are more widespread. Furthermore, the effects on the surface zone of additively manufactured components by hybrid finish milling have not yet been a subject of research. The results show that the structural morphology could be significantly influenced with the addition of zirconium and hafnium. KW - Alloy modification KW - Ultrasonic-assisted milling KW - Plasma-transferred arc welding KW - Co-Cr-alloy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-554182 SN - 0043-2288 SN - 1878-6669 SP - 1 EP - 13 PB - Springer CY - Heidelberg AN - OPUS4-55418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Eissel, A. A1 - Treutler, K. A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912) is an alloy with 36% nickel and 64% iron and is generally classified as a difficult-to-cut material. Increasingly complex structures and the optimization of resource efficiency are making additive manufacturing (AM) more and more attractive for the manufacture or repair of components. Subsequent machining of AM components is unavoidable for its final contour. By using modern, hybrid machining processes, e.g., ultrasonic-assisted milling (US), it is possible to improve the cutting situation regarding the resulting surface integrity as well as the cutting force. Part I deals with the influence of the alloying elements Ti, Zr, and Hf on the microstructure and the hardness of the initial alloy 36. Part II focusses on the effect of the alloy modifications and the ultrasonic assistance on machinability as well as on the surface integrity after finish-milling. The results show a highly significant influence of the ultrasonic assistance. The cutting force during the US is reduced by over 50% and the roughness of approx. 50% compared to conventional milling (CM) for all materials investigated. Moreover, the US causes a defect-free surface and induces near-surface compressive residual stresses. CM leads to a near-surface stress state of approx. 0 MPa. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy 36 KW - Ultrasonic-assisted milling KW - Surface integrity KW - Modification of structural morphology PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-566609 SP - 1 EP - 8 PB - Springer CY - Heidelberg AN - OPUS4-56660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, Julien A1 - Schröpfer, Dirk A1 - Hamacher, M. A1 - Michels, H. A1 - Hamm, C. A1 - Appelt, M. A1 - Börner, Andreas A1 - Kannengießer, Thomas T1 - Tool development for hybrid finishing milling of iron aluminides N2 - The importance of high-temperature materials made of iron aluminides (FeAl) has been increasing in light weight applications, e.g., airplane turbines, due to the high material’s specific strength. However, the highly economic production by means of permanent mold casting involves special microstructures for Fe26Al4Mo0.5Ti1B alloy components leading to difficult machinability for subsequent finishing milling and low surface qualities. Major effects of tool and machining parameter variation incorporating ultrasonic assistance on the milling process and surface integrity are shown. Loads for tool and component surface are significantly adjustable to enable an economic process chain regarding the surface integrity of safety-relevant components. KW - Ultrasonic-assisted milling KW - Iron aluminide KW - Surface integrity KW - Tool wear PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-566294 SN - 2212-8271 VL - 108 SP - 793 EP - 798 PB - Elsevier B.V. AN - OPUS4-56629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Heat control and design‑related effects on the properties and welding stresses in WAAM components of high‑strength structural steels N2 - Commercial high-strength fller metals for wire arc additive manufacturing (WAAM) are already available. However, widespread industrial use is currently limited due to a lack of quantitative knowledge and guidelines regarding welding stresses and component safety during manufacture and operation for WAAM structures. In a joint research project, the process- and material-related as well as design infuences associated with residual stress formation and the risk of cold cracking are being investigated. For this purpose, reference specimens are welded fully automated with defned dimensions and systematic variation of heat control using a special, high-strength WAAM fller metal (yield strength>790 MPa). Heat control is varied by means of heat input (200–650 kJ/m) and interlayer temperature (100–300 °C). The ∆t8/5 cooling times correspond with the recommendations of fller metal producers (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. High heat input leads to a lower tensile stress in the component and may cause unfavorable microstructure and mechanical properties. However, a sufciently low interlayer temperature is likely to be suitable for obtaining adequate properties at a reduced tensile stress level when welding with high heat input. The component design afects heat dissipation conditions and the intensity of restraint during welding and has a signifcant infuence on the residual stress. These complex interactions are analyzed within this investigation. The aim is to provide easily applicable processing recommendations and standard specifcations for an economical, appropriate, and crack-safe WAAM of high-strength steels. KW - GMA welding KW - Additive manufacturing KW - Residual stresses KW - High-strength steel KW - Cold cracking safety KW - Heat control KW - Wind energy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-567397 SN - 1878-6669 VL - 2022 SP - 1 EP - 11 PB - Springer CY - Berlin AN - OPUS4-56739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Gustus, R. A1 - Treutler, K. A1 - Wesling, V. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Alloy modification for additive manufactured Ni alloy components—part I: effect on microstructure and hardness of Invar alloy N2 - Alloy 36 (1.3912), also known as “Invar,” is an alloy with 36% nickel. The alloy has a remarkably low thermal expansion coefficient in certain temperature ranges. This peculiarity is called the invar effect, which was discovered in 1896 by the Swiss physicist Charles Édouard Guillaume. Therefore, it is used in applications in which dimensional stability is critical, such as molding tools for composite materials in aerospace, automotive applications, or liquified natural gas (LNG) cargo tanks. Moreover, increasingly complex structures and the optimization of resource efficiency also require additive manufacturing steps for the production or repair of components. Additively manufactured components have a heterogeneous microstructure and anisotropic mechanical properties. In addition, the manufactured components require subsequent machining surface finishing, like finish milling, to achieve their final contour. Nickel iron alloys are difficult to machine. Additionally, inhomogeneous microstructure may lead to unstable cutting forces and conditions. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr, and Hf up to a maximum of 0.33 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Furthermore, one modification is applied to metal arc welding process and investigated. Part II focuses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy modification KW - Alloy 36 KW - Plasma-transferred arc welding PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-571777 SN - 0043-2288 SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-57177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Rapid solidification during welding of duplex stainless steels – in situ measurement of the chemical concentration by Laser-Induced Breakdown Spectroscopy (LIBS) N2 - Duplex stainless steels (DSS) are frequently used, especially in applications requiring high strength combined with high corrosion resistance in aggressive media. Examples include power plant components and maritime structures. During welding of these steels, local variations in chemical composition can occur. This results in ferritization of the material and negatively affects the mechanical properties of the components. In this work, tungsten inert gas (TIG) welding experiments were performed with DSS. Chemical composition analysis was realized in situ by using Laser Induced Breakdown Spectroscopy (LIBS). The aim of the work is to quantitatively measure the chemical composition in the weld seam of various DSS and to identify possible influences of welding parameters on the microstructure of the material. The chemical concentrations of the main alloying elements Cr, Ni, Mn on the surface of the sample during the welding process and the cooling process were measured. Mn and Ni are austenite stabilizers and their content increases during welding by using certain high alloyed filler material. Spectra were recorded every 1.3 s at a spacing of approximately 2 mm. During the cooling process the location of the measurement was not changed. The LIBS method is proofed to be suitable for the quantitative representation of the chemical compositions during the welding process. T2 - ICASP-6 CY - Le Bischenberg, France DA - 20.06.2022 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding KW - Evaporation PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-571308 VL - 1274 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-57130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Lei A1 - Pittner, Andreas A1 - Michael, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Effect of cooling rate on microstructure and properties of microalloyed HSLA steel weld metals N2 - Two high strength Nb/Ti microalloyed S690QL steels were welded with identical filler material, varying welding parameters to obtain three cooling rates: slow, medium and fast cooling. As cooling rate increased, the predominantly acicular ferrite in Nb weld metal (WM) is substituted by bainite, with a consequence of obvious hardness increase, but in Ti WM, no great variation of acicular ferrite at all cooling rates contributed to little increment of hardness. The transition between bainite and acicular ferrite has been analysed from the point view of inclusions characteristics, chemical composition and cooling rate. Excellent Charpy toughness at 233 K was obtained with acicular ferrite as predominantly microstructure. Even with bainite weld of high hardness, the toughness was nearly enough to fulfill the minimal requirements. WM for Ti steel showed to be markedly less sensitive to the variations of cooling rate than that for Nb steel. KW - High strength steel KW - Weld metal KW - Cooling rate KW - Charpy toughness KW - Acicular ferrite PY - 2015 U6 - https://doi.org/10.1179/1362171815Y.0000000026 SN - 1362-1718 VL - 20 IS - 5 SP - 371 EP - 377 PB - Taylor and Francis CY - London, UK AN - OPUS4-36518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Lei A1 - Kannengießer, Thomas T1 - Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel N2 - The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results. KW - Hardness measurement KW - Microstructure KW - Microalloyed steel KW - Welding KW - Grain growth PY - 2014 U6 - https://doi.org/10.1016/j.msea.2014.06.106 SN - 0921-5093 VL - 613 SP - 326 EP - 335 PB - Elsevier B.V. AN - OPUS4-36520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Steppan, Enrico A1 - Kannengießer, Thomas A1 - Steger, Jörg ED - Lippold, J. T1 - Effect of hydrogen on mechanical properties of heat affected zone of a reactor pressure vessel steel grade N2 - The steel grade 20MnMoNi5-5 (according to German DIN standard or 16MND5 according to French AFNOR standard) is widely applied in (weld) fabrication of reactor pressure vessel components. Thus, a wide range of welding technologies (like submerged arc welding (SAW) or tungsten inert gas (TIG)) is used resulting in different heat affected zone (HAZ) microstructures. During weld fabrication, the weld joints may take up hydrogen. Especially, the HAZ shows an increased susceptibility for a degradation of the mechanical properties in presence of hydrogen. In addition, the hydrogen-assisted degradation of mechanical properties is influenced by three main local factors: hydrogen concentration, microstructure, and load condition. Hence, the base material (BM) and two different simulated non-tempered as-quenched HAZ microstructures were examined using hydrogen-free and hydrogen-charged tensile specimens. The results indicate that the effect of hydrogen on the degradation is significantly increased in case of the HAZ compared to the BM. In addition, hydrogen has remarkable effect in terms of reduction of ductility. It was ascertained that the degradation of the mechanical properties increases in the order of BM, bainitic HAZ, and the martensitic HAZ. Scanning electron microscope (SEM) investigation showed a distinct change of the fracture topography depended on the microstructure with increasing hydrogen concentration in case of the as-quenched HAZ microstructures. KW - Mechanical properties KW - Pressure vessel steels KW - Heat affected zone KW - Hydrogen KW - Hydrogen embrittlement KW - Low alloy steels PY - 2016 UR - http://link.springer.com/article/10.1007/s40194-016-0325-9 U6 - https://doi.org/10.1007/s40194-016-0325-9 VL - 60 IS - 4 SP - 623 EP - 638 PB - Springer-Verlag GmbH CY - Heidelberg, Germany AN - OPUS4-36454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boateng, Francis Twumasi A1 - Ewert, Uwe A1 - Kannengießer, Thomas A1 - Zscherpel, Uwe A1 - Griesche, Axel A1 - Kromm, Arne A1 - Hohendorf, Stephan A1 - Redmer, Bernard T1 - Real-time radiography for observation of crack growth during GTA (Gas Tungsten Arc) welding N2 - In situ crack detection in the mushy zone and the solid weld of a gas tungsten arc (GTA) weld using X-ray imaging during welding is a new research area for NDT inspection. Usually, NDT flaw detection is done after the complete solidification of the weld seam. In this paper, we present the use of real-time radiography with a minifocus X-ray source (YXLON X-ray tube Y.TU 225-D04) and a 75μm pixel size digital detector array (Dexela 1512) for the acquisition of 2D radiographic images by a sequence of exposures with time intervals of 80 ms for hot crack detection during single pass bead-on-plate GTA welding of 3 mm thick plates of aluminium alloy AlMgSi (6060). An analysis of the crack distribution in the weld sample is conducted from the acquired 2D radiographs and its corresponding 3D volumetric reconstruction achieved by linear coplanar digital laminography. This in situ approach opens new possibilities in the field of hot crack research by having the direct information of both the crack initiation and growth and its correlation to the welding parameters. KW - Hot cracking KW - Radiography KW - GTA welding KW - Aluminium alloys KW - Real-time operation PY - 2016 U6 - https://doi.org/10.1007/s40194-016-0351-7 SN - 0043-2288 SN - 1878-6669 VL - 60 IS - 5 SP - 931 EP - 937 AN - OPUS4-37128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gollnow, C. A1 - Griesche, Axel A1 - Weidemann, Jens A1 - Kannengießer, Thomas T1 - Influence of external loads on a characteristic angle between grains and solidus line as an indicator for hot cracking susceptibility during GTA welding N2 - A long list of criteria determining the hot cracking susceptibility already exists. A main influence on solidification cracking can result from the design of the welded construction, i.e. from the influence of external loads. Using the Controlled Tensile Weldability (CTW) test, an external load hot cracking test, the influence of constant pre-load and different extension rates on the solidification cracking behavior of GTA (Gas Tungsten Arc) welds in an austenitic (AISI 309) and a ferritic (AISI 441) steel were investigated. Compared to specimens welded allowing free shrinkage and welded with an applied constant tensile pre-load, the specimens welded during the application of increasing tensile load show solidification cracks. In the weld seams, a characteristic angle α between the predominantly columnar grains and the fusion line can be observed. Specimens showing solidification cracks show a significantly larger angle α compared to the crack-free specimens. Based on these observations, the characteristic angle α is proposed as a new hot cracking criterion. KW - Hot cracking KW - External load test KW - Component design KW - Crack criterion KW - Grain growth PY - 2017 U6 - https://doi.org/10.1016/j.jmatprotec.2016.08.013 VL - 239 SP - 172 EP - 177 PB - Elsevier AN - OPUS4-37278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Lei A1 - Kannengießer, Thomas T1 - HAZ softening in Nb-, Ti- and Ti plus V-bearing quenched and tempered steel welds N2 - Three high-strength Nb-, Ti- and Ti + Vmicroalloyed S690QL steels were welded to investigate the formation of softened HAZ and its impact on tensile properties. The welding was performed with three levels of heat input to produce softened zones with different characteristics (softening width, minimum hardness and softening ratio), and then, further tensile tests were done to study their influence on weld performance. The results showed that Ti bearing steel exhibited the lowest resistance to softening with the presence of largest soften width and lowest hardness value, causing final tensile failure occurred at softened HAZ. The metallurgical reason for the lower hardness is the high fraction of coarse ferrite. Nb- and Ti + V-bearing steels suffered moderate softening, due to high hardenability with addition of Mo, Nb and V, but the softening effect did not remarkably influence the tensile properties of these two steels. KW - Microalloyed steels KW - QT steel KW - Alloy addition KW - MAG welding KW - Heat-affected zone softening PY - 2016 U6 - https://doi.org/10.1007/s40194-016-0299-7 SN - 0043-2288 VL - 60 IS - 2 SP - 177 EP - 184 PB - Springer CY - Heidelberg, Germany AN - OPUS4-36312 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Formation of welding residual stresses in low transformation temperature (LTT) materials N2 - For the safety and cost efficiency of welded high-strength steel structures, precise knowledge of the level and distribution of welding- and cooling-specific stresses and residual stresses is essential, since they exert a decisive influence on strength, crack resistance, and finally on the bearable service load. This paper presents innovative filler materials, of which the phase transformation temperature was deliberately adjusted via the chemical composition. The transformation behaviour of these martensitic Low Transformation Temperature (LTT-) filler materials shows direct effects on the local residual stresses in the weld and the HAZ. These effects can purposefully be exploited to counteract the thermally induced shrinkage of the material and to produce significant compressive residual stresses in the weld. Comparative welding experiments were carried out on 690 MPa high-strength base materials using various LTT-filler materials. High energy synchrotron radiation was used for residual stress measurement. Particularly the use of high energy synchrotron radiation makes it possible to detect the residual stress condition fast without destruction of material. Thereby, residual stress depth gradients can be determined simultaneously without removing material. In steel, gradients of up to 150 µm can be resolved in such a way. Furthermore, the application of high energy radiation permits determination of residual stresses of any available residual austenite contents. Results show significant dependence of transformation temperatures on the resulting residual stress level and distribution. KW - Phase specific residual stresses KW - Phase transformation KW - Low transformation temperature filler wire KW - Energy dispersive diffraction KW - High strength steel PY - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-205909 SN - 0104-9224 SN - 1980-6973 VL - 14 IS - 1 SP - 74 EP - 81 PB - Associação Brasileira de Soldagem, ABS CY - Rio de Janeiro AN - OPUS4-20590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - In-situ-phase analysis using synchrotron radiation of low transformation temperature (LTT) welding material N2 - Cold cracking resistance is a relevant evaluation criterion for welded joints and affected by residual stresses which result from the welding procedure. Compressive residual stresses can thereby have a positive influence on preventing cracking. A unique possibility of generating compressive residual stresses already during the welding procedure is offered by the so-called Low Transformation Temperature (LTT) filler wires. Compared to conventional wires, these materials show decreased phase transformation temperatures which can work against the cooling-specific contraction. In consequence, distinct compressive residual stresses can be observed within the weld and adjacent areas. The strength of these fillers makes them potentially applicable to high-strength steel welding. Investigations were carried out to determine the phase transformation behaviour of different LTT-filler materials. Transformation temperatures were identified using Single Sensor Differential Thermal Analysis (SS-DTA). Additionally Synchrotron radiation was used to measure the transformation kinetics of all involved crystalline phases during heating and cooling of a simulated weld thermal cycle. KW - In-situ phase analysis KW - Energy dispersive diffraction KW - Phase transformation KW - Low Transformation Temperature filler wire PY - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-205922 SN - 0104-9224 SN - 1980-6973 VL - 14 IS - 1 SP - 82 EP - 88 PB - Associação Brasileira de Soldagem, ABS CY - Rio de Janeiro AN - OPUS4-20592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Launert, B. A1 - Rhode, Michael A1 - Pasternak, H. A1 - Kannengießer, Thomas ED - Dubina, D. ED - Ungureanu, V. T1 - Welding Residual Stresses in High-strength Steel. Experimental Results N2 - This article presents the latest results of an ongoing national research project on improved models for the prediction of welding residual stresses of thick-plated welded I-girders. The experimental program is presented and the importance of different influencing factors on the residual stresses is discussed in detail. All results are compared for mild (S355J2+N) and high strength (S690QL) steel. Finally, conclusions for further works are drawn. T2 - SDSS 2016 - The International Colloquium on Stability and Ductility of Steel Structures - SDSS 2016 CY - Timisoara, Romania DA - 30.05.2016 KW - Residual Stresses KW - Welding KW - High-Strength Steel KW - I-Girder KW - Component Test PY - 2016 SN - 978-92-9147-133-1 VL - 2016 SP - 517 EP - 524 PB - Ernst & Sohn AN - OPUS4-37890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Hannemann, Andreas A1 - Friedersdorf, Peter A1 - Kannengießer, Thomas A1 - Gibmeier, J. T1 - In-situ load analysis in multi-run welding using LTT filler materials N2 - Modifying the level of mostly detrimental welding residual stresses already during the welding process would be highly attractive as time- and cost-consuming post processing may be prevented. The nature of stress buildup during welding-associated cooling is highly affected by phase transformations. Up to now, it is not clear in which way this is applicable to real component welding exhibiting high shrinkage restraint and complex heat input. In this study, two different low transformation temperature (LTT) alloys have been investigated concerning the stress development in restrained multi-run butt welding in order to evaluate the potential of stress reduction. Pulsed gas metal arc welding (P-GMAW) welding was executed on a testing facility designed to simulate real lifelike restraint conditions of component weldments. The effect of reducedMS-temperatures and the heat control on the globally acting stresses was monitored by in-situ measurement of the reaction forces during welding fabrication. Additional local residual stress measurements allowed analyzing global as well as local loading of the welded construction. Although phase transformation has a significant influence on unloading the joint during each weld pass, the reaction stress upon cooling to room temperature seems to be determined mainly by the heat input. On the surface, low longitudinal residual stresses were observed in case of LTT whereas transverse residual stresses are less affected. T2 - 69th IIW Annual Assembly and International Conference CY - Melbourne, Australia DA - 10.07.2016 KW - Phase transformation temperature KW - Residual stress KW - Welding KW - Dilution KW - Restraint PY - 2016 U6 - https://doi.org/10.1007/s40194-016-0373-1 SN - 0043-2288 VL - 60 IS - 6 SP - 1159 EP - 1168 PB - Springer CY - Heidelberg AN - OPUS4-37892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pasternak, H. A1 - Launert, B. A1 - Rhode, Michael A1 - Kannengießer, Thomas ED - Zingoni, A. T1 - Residual Stresses and Imperfections in Welded High-strength I-shape Sections N2 - This article addresses the imperfections caused by the weld assembly in I-shape sections made of two structural steel grades. Load influencing imperfections are assumed as deviations from the ideal shape (e.g. bending distortion) and longitudinal residual stresses. The quality of a numerically aided design of components exposed to either compression and/or bending is significantly affected, depending on these parameters. The Eurocode (EC3) provides robust simplified models. As a result, the Ultimate Limit State (ULS) is approached on a conservative basis. The following investigations are aimed at providing further guidance on these values in component-like specimens. The long term goal is an improved understanding of the load-bearing capacity of such sections. As a first step in this process, the experimental and corresponding numerical studies are presented. T2 - 6th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016) CY - Cape Town, South Africa DA - 05.09.2016 KW - Residual Stresses KW - Welding KW - High-strength Steel KW - Numerical Modeling KW - Component PY - 2016 SN - 978-1-138-02927-9 VL - 2016 SP - 1139 EP - 1146 PB - CRC Press, Taylor & Francis Group CY - Boca Raton, FL, USA AN - OPUS4-37888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - 3D imaging of hydrogen assisted cracking using analyser-based imaging N2 - To better understand the mechanism of hydrogen assisted cracking (HAC), it is important to investigate the 3D structure of the cracks non-destructively. Since, cracks introduced by HAC are usually very small, conventional x-ray imaging methods often lack the required spatial resolution. However, the detection of those cracks can be enhanced by taking advantage of refraction at interfaces within the sample. To image this refractive deflection we employ analyser based imaging (ABI). In this work we aim at proving the enhanced crack detection of ABI by investigating an alluminum alloy weld. T2 - BESSY User Meeting 2015 CY - Berlin, Germany DA - 09.12.2015 KW - X-ray refraction KW - Synchrotron KW - Analyser-based imaging KW - Hydrogen assisted cracking KW - Welding PY - 2015 AN - OPUS4-38278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Flohr, Kerstin A1 - Kromm, Arne A1 - Kannengießer, Thomas ED - Holden, T.M. ED - Muránsky, O. ED - Edwards, L. T1 - Multi-axial Analyses of Welding Stresses in High-Strength Steel Welds N2 - Today’s efforts for lightweight design result in a growing application of high-strength structural steels from 960 MPa. In welded structures of these steels increased demands regarding component safety and a high elastic ratio should be considered. Hence, the prevention of an evolution of high weld-induced tensile residual stresses is required. Recent studies showed that component related restraint conditions of welds are able to elevate welding induced stresses to critical values, depending on material characteristics, the welding process and parameters. This work involves multi-axial welding loads as a consequence of the superposition of local residual stresses, global reaction stresses and moments, varying the welding parameters under different restraint conditions. The global welding loads are measured via GMA-weld tests in a special testing facility and via a DIC(Digital Image Correlation)-system in a slot weld. Local transverse residual stresses were analysed by means of X-ray diffraction. The application of a less amount of weld runs due to a modified welding parameters and welds seam configurations revealed as a beneficial approach to reduce welding loads in high-strength steels. T2 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 04.07.2016 KW - High-Strength Steel KW - Welding KW - Reaction Stress KW - X-Ray Diffraction PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-390453 SN - 978-1-9452-9116-6 SN - 2474-395X VL - 2 SP - 205 EP - 210 PB - Materials Research Forum LLC. CY - Millersville PA, USA AN - OPUS4-39045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Characterising phase transformations of different LTT alloys and their effect on residual stresses and cold cracking N2 - Novel martensitic filler materials with specially adjusted martensite start temperatures (Ms) can counteract the cooling specific shrinkage due to expansion effects of the weld metal associated with phase transformations. That can be exploited to create compressive residual stresses in the weld and adjacent areas, i.e. beneficial for increasing fatigue strength. The Ms temperature is shifted via the chemical composition, mainly by the alloying elements nickel and chromium, resulting as well in different retained austenite contents. Investigations were made using different Low Transformation Temperature (LTT) alloys with varying nickel content. The resulting phase transformation temperatures were – for the first time – detected using high energy synchrotron diffraction and Single Sensor Differential Thermal Analysis (SS-DTA). Compared to angle dispersive diffraction, energy dispersive diffraction offers the possibility to measure residual stresses of the martensite and austenite phase parallel fast in one experiment up to depths of 100 µm. The residual stresses show significant distributions dependent on Ms temperature. The effect on the cold cracking behaviour of these alloys was investigated using the Tekken test. Results show that cold cracking can be avoided when appropriate contents of retained austenite are existent. KW - Austenite KW - Cold cracking KW - Martensite KW - Low themperature KW - Transformation PY - 2011 U6 - https://doi.org/10.1007/BF03321286 SN - 0043-2288 VL - 55 IS - 3 SP - 48 EP - 56 PB - International Institute of Welding CY - France AN - OPUS4-38978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Engineering approach to assess residual stresses in welded components N2 - Present trends to lightweight design lead to an expanding relevance of high-strength fine-grained structural steels especially in mobile crane constructions. With growing material strength, the challenge for welding fabrication increases, since high loading capacities and safety requirements have to be accomplished. The utilisation of the high strength potential often requires complex constructions associated with high restraint conditions while welding. Increased residual stresses may occur due to superimposing reaction and restraint stresses, which have to be quantified and evaluated to ensure the safety and integrity of high-strength steel constructions. Particularly, the scope of residual stresses has to be taken into account for different effects in the HAZ, notches, weld and base metal. Commonly, conservative assumptions of residual stresses lead to distinct underestimations of the load bearing capacity particularly for welded high-strength steel constructions. This study concludes results of recent works of the researchers regarding the complex interaction among heat control, material and restraint intensity on the residual stress state in welded components. These analyses are extended by further experiments. Based on the obtained major effects, an approach for a welding residual stress assessment regarding component design according to prevailing standards for crane construction, an important application for high-strength steels, is presented. KW - Process parameters KW - Residual stresses KW - MAG welding KW - Restraint KW - High-strength steels PY - 2017 U6 - https://doi.org/10.1007/s40194-016-0394-9 SN - 0043-2288 SN - 1878-6669 VL - 91 IS - 1 SP - 91 EP - 106 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-39044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Boin, M. A1 - Kannengießer, Thomas A1 - Gibmeier, J. ED - Olden, T.-M. ED - Muransky, O. Muransky ED - Edwards, L. T1 - Influence of heat control on residual stresses in low transformation temperature (LTT) large scale welds N2 - The current paper presents residual stress analyses of large scale LTT (Low Transformation Temperature) welds. LTT filler materials are specially designed for residual stress engineering by means of an adjusted martensite phase transformation. Controlling the level of mostly detrimental residual stresses already during the welding process would be highly attractive as time and cost consuming post processing may be prevented. In large scale welds the residual stress state is influenced by the heat control (e.g. interpass temperature) during welding. Therefore, welding residual stresses are studied here putting the focus on the influence of welding process parameters while joining heavy steel sections with a thickness of 25 mm. The residual stress state was determined at the top surface using X-ray diffraction as well as in the bulk by neutron diffraction. The results show that control of the interpass temperature is vital for the residual stresses present in the joints. This accounts for the top surface but is most pronounced for the bulk of the welds. While high interpass temperatures are appropriate to induce compressive residual stresses in the weld metal, low interpass temperatures favor unwanted tensile residual stresses instead. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - LTT KW - Welding residual stress KW - Phase transformation KW - Interpass temperature PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389628 SN - 978-1-94529117-3 SN - 978-1-94529116-6 SN - 2474-395X VL - 2 SP - 223 EP - 228 PB - Materials Research Forum LLC CY - Millersville (PA), USA AN - OPUS4-38962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollnow, C. A1 - Kannengießer, Thomas ED - Böllinghaus, Thomas ED - Lippold, J. E. ED - Cross, C. E. T1 - Consideration of welding-specific component design on solidification crack initiation N2 - A commonly used way of minimizing the occurrence of hot cracks, especially solidification cracks during component welding, is mainly to analyse and vary process parameters such as welding speed and consequently the heat input. Metallurgy and component design are however hardly ever considered due to special production requirements and therefore, restricted flexibility in material selection and design. Such conditions, especially crack-critical welding positions are given by slot-welds or welds near pre-deformed areas, for instance bending edges. Hence, it follows that increased local and global residual component stress caused cracking on reaching a solidification crack critical level, which is characterised by solidification crack initiation. T2 - 4th International Workshop Cracking Phenomena in Welds CY - BAM, Berlin, Germany DA - 02.04.2014 KW - solidification cracks PY - 2016 SN - 978-3-319-28432-3 U6 - https://doi.org/10.1007/978-3-319-28434-7_6 SP - 101 EP - 117 PB - Springer International Publishing CY - Cham, Switzerland AN - OPUS4-36567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - 3D Crack analysis in hydrogen charged lean duplex stainless steel with synchrotron refraction CT N2 - Hydrogen in metals can cause a degradation of the mechanical properties, the so-called hydrogen embrittlement. In combination with internal stresses, hydrogen assisted cracking (HAC) can occur. This phenomenon is not completely understood yet. To better characterise the cracking behaviour, it is important to gain information about the evolution of the 3D crack network. For this purpose samples of lean duplex stainless steel were loaded with hydrogen by means of electrochemical charging and investigated by means of synchrotron refraction CT and SEM fractography after uniaxial tensile loading. Synchrotron refraction CT is an analyser-based imaging (ABI) technique. It uses a Si (111) single crystal as analyser, which is placed into the beam path between sample and detector. According to Bragg’s law only incident x-rays within a narrow range around the Bragg-angle are diffracted from the analyser into the detector. Hence, the analyser acts as an angular filter for the transmitted beam. This filtering allows to turn the refraction and scattering of x-rays into image contrast. Refraction occurs at all interfaces, where the density of the material changes and is more sensitive to density changes than the attenuation. Therefore, it is possible to detect smaller cracks than with classical x-ray imaging techniques, like CT, with comparable spacial resolution. It also visualises the 3D structure of the cracks and gains quantitative information about their morphology and distribution. Since cracks introduced by HAC are usually very small and have a small opening displacement, synchrotron refraction CT is expected to be well suited for imaging this cracking mechanism and can be a valuable tool to characterise the formation and the evolution of a 3D crack network. T2 - WCNDT 2016 CY - München, Germany DA - 13.06.2016 KW - X-ray refraction KW - Computed tomography KW - Hydrogen assisted cracking KW - Duplex stainless steel PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-366481 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.4.B.3, 1 EP - 9 AN - OPUS4-36648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Schasse, R. A1 - Xu, Ping A1 - Mente, Tobias A1 - Kannengießer, Thomas ED - Olden, T.-M. ED - Muransky, O. ED - Edwards, L. T1 - Influence of weld repair by gouging on the residual stresses in high strength steels N2 - Carbon arc-air gouging is a common technology when repairing defects in welded structures. Often this technique is applied in repeated cycles even on the same location of the joint. Due to the multiple heat input by gouging and subsequent re-welding, the residual stresses are strongly influenced. This can become crucial when microstructure and mechanical properties are adversely affected by multiple weld reparations. Knowledge about the relation of gouging and residual stresses is scarce but important when high strength steels, which are sensitive to residual stresses, are processed. The present study shows the effect of repair welding on a high strength steel structural element. The weld and the heat affected zone were subjected to multiple thermal cycles by gouging and subsequent repair welding. The residual stresses were determined by X-ray diffraction at different positions along the joint. The results showed that the residual stress level has increased by the repair cycles. This is most pronounced for the heat affected zone. Adapted welding procedures may prevent detrimental residual stress distributions. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - Repair welding KW - Weld residual stress KW - Carbon arc-air gouging PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389242 SN - 978-1-94529117-6 SN - 978-1-94529117-3 SN - 2474-395X VL - 2 SP - 169 EP - 174 PB - Materials Research Forum LLC CY - Millersville, PA, USA AN - OPUS4-38924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas T1 - Crack resistance of supermartensitic steel pipeline welds in offshore industry N2 - The increasing application of supermartensitic steels for welded pipelines is an economical alternative to the hitherto used higher-alloyed materials in the North Sea oil and gas indus-try. Failure in such constructions must at any rate be excluded for economical and ecologi-cal reasons. The application of these steels for the transport of corrosive mixtures may, however, involve hydrogen pickup with subsequent hydrogen-assisted stress corrosion cracking. It is therefore necessary not only to assure the weldability, but particularly to have best possible knowledge of the service behaviour and of the failure risk. In order to ensure the transferability of test results to real joined components, innovative test methods are in-creasingly required to be incorporated into a closed test sequence. It will be demonstrated how it is possible to gain significant advantages from the direct comparison between ex-perimentally determined results from component weld tests on the one hand and material-specific data from small-scale tests on the other hand and numerical simulations. These data that have now been made available are of major importance for industrial applications and are considered to provide a sound basis for realistic lifetime assessments. T2 - Conference Welding and Related Inspection Technologies, IIW CY - Stellenbosch, South Africa DA - 08.03.2006 KW - Supermartensitics KW - Hydrogen pickup KW - Hydrogen diffusion KW - Permeation experiments KW - Component tests KW - Numerical simulation KW - Closed test sequence PY - 2006 SP - 1 EP - 14 PB - Beta Products cc CY - Lyttelton, South Africa AN - OPUS4-38925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Launert, B. A1 - Rhode, Michael A1 - Kromm, Arne A1 - Pasternak, H. A1 - Kannengießer, Thomas T1 - Measurement and numerical modeling of residual stresses in welded HSLA component-like I-girders N2 - The present contribution shows the residual stress results obtained from experiments with the sectioning method in comparison to global(structural) welding simulation models on component-like (i.e., large scale) I-girders made of structural steel grades S355 and S690QL. Plates were welded by conventional gas metal arc welding using two different heat inputs. In addition, the base material was assumed to be stress-free. Based on these results, conclusions and recommendations for the design of welded I-girders are drawn. T2 - IIW - Annual Assembly 2016 CY - Melbourne, Australia DA - 10.07.2016 KW - Residual Stresses KW - Microalloyed Steels KW - Girders KW - MAG Welding KW - Numerical Simulation PY - 2016 U6 - https://doi.org/10.1007/s40194-016-0413-x SN - 1878-6669 SN - 0043-2288 VL - 61 IS - 2 SP - 223 EP - 229 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-38919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Launert, B. A1 - Dixneit, Jonny A1 - Kannengießer, Thomas A1 - Pasternak, H. ED - Olden, T.-M. ED - Muransky, O. ED - Edwards, L. T1 - Combining sectioning method and X-ray diffraction for evaluation of residual stresses in welded high strength steel components N2 - Residual stresses and distortions in welded I-girders for steel construction are relevant when evaluating the stability of steel beams and column members. The application of high strength steels allows smaller wall thicknesses compared to conventional steels. Therefore, the risk of buckling has to be considered carefully. Due to the lack of knowledge concerning the residual stresses present after welding in high strength steel components conservative assumptions of their level and distribution is typically applied. In this study I-girders made of steels showing strengths of 355 MPa and 690 MPa were welded with varying heat input. Due to the dimension of the I-girders and the complex geometry the accessibility for residual stress measurement using X-ray diffraction was limited. Therefore, saw cutting accompanied by strain gauge measurement has been used to produce smaller sections appropriate to apply X-ray diffraction. The stress relaxation measured by strain gauges has been added to residual stresses determined by X-ray diffraction to obtain the original stress level and distribution before sectioning. The combination of both techniques can produce robust residual stress values. From practical point of view afford for strain gauge application can be limited to a number of measuring positions solely to record the global amount of stress relaxation. X-ray diffraction can be applied after sectioning to determine the residual stresses with sufficient spatial resolution. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - Welding KW - Residual Stress KW - Sectioning Method KW - X-Ray Diffraction KW - Component Testing PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389206 SN - 978-1-94529117-3 SN - 978-1-94529117-6 SN - 2474-395X VL - 2 SP - 163 EP - 168 PB - Materials Research Forum LLC CY - Millersville (PA), USA AN - OPUS4-38920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Launert, B. A1 - Rhode, Michael A1 - Kromm, Arne A1 - Pasternak, H. A1 - Kannengießer, Thomas ED - Olden, T.-M. ED - Muransky, O. ED - Edwards, L. T1 - Residual stress influence on the flexural buckling of welded I-girders N2 - The nonlinear analysis became a common tool to precisely assess the load-bearing behavior of steel beam and column members. The failure level is significantly influenced by different types of imperfections, among geometric also structural imperfections (residual stresses). Here are still gaps in the knowledge. Nowadays, 3-D welding simulation developed to a level where it could provide reliable estimation of weld-induced distortion and residual stresses. Nevertheless, modelling and computational effort are still in a less practicable range. In this study a simplified procedure to implement residual welding stresses in continuous large scale members is proposed and the influence on the ultimate limit state of slender members in compression is evaluated for two common structural steel grades. The results showed significant improvements in the utilization of load bearing capacity compared with simplified design methods. The comparatively general approach in this study offers potential for future optimization. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - Stability Design KW - Finit Element Method KW - 2-D Welding Simulation KW - Inherent Strain KW - Plasticity-based Analysis PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389210 SN - 978-1-94529117-3 SN - 978-1-94529117-6 SN - 2474-395X VL - 2 SP - 109 EP - 114 PB - Materials Research Forum LLC CY - Millersville (PA), USA AN - OPUS4-38921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas ED - Lippold, J. ED - Boellinghaus, Thomas ED - Richardson, I. T1 - Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process N2 - In order to satisfy the growing requirements towards lightweight design and resource efficiency in modern steel constructions, e.g., mobile cranes and bridges, high-strength steels with typical yield strength ≥ 690 MPa are coming into use to an increasing extent. However, these steels require special treatment in welding. The susceptibility for degradation of the mechanical properties in the presence of hydrogen increases significantly with increasing yield strength. In case of missing knowledge about how and the amount of hydrogen that is uptaken during welding, hydrogen-assisted cracking (HAC) can be a negative consequence. Moreover, modern weld technology like the modified spray arc process enables welding of narrower weld seams. In this context, a reduced number of weld beads, volume, and total heat input are technical and economical benefits. This work presents the influence of welding parameters on the diffusible hydrogen content in both (1) single-pass and (2) multi-layer welds. Different hydrogen concentrations were detected by varied contact tube distance, wire feed speed, arc length, and varied arc type (transitional arc and modified spray arc). The results show that all welding parameters have significant influence on the diffusible hydrogen concentration in the single-pass welds. By increasing the number of weld beads in case of multi-layer welding, the hydrogen concentration has been reduced. Whereby, differences in hydrogen concentrations between both arc types are present. KW - Hydrogen KW - MAG welding KW - High-strength steels KW - Process parameters PY - 2018 U6 - https://doi.org/10.1007/s40194-017-0535-9 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 1 SP - 9 EP - 18 PB - Springer CY - Berlin Heidelberg AN - OPUS4-43864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Load analyses of welded high-strength steel structures using image correlation and diffraction techniques N2 - In an increasing number of modern steel applications, high-strength structural steel grades are demanded to meet specifications regarding a high load-bearing capacity and a low operating weight. Lightweight design rules enhance the safety requirements, especially for welded joints. Besides a higher cracking risk for high-strength steel welds, the formation of tensile residual stresses might lead to fracture due to overloading or premature failure if not adequately considered. In this study, a stress-strain analysis was conducted at component-related structures from S960QL using digital image correlation while preheating, welding and cooling adjacent to the weld seam. X-ray diffraction analysis of the local residual stresses in the weld seam showed a good comparability with global analyses using either a DIC system or a special testing facility, which allowed in situ measurements of welding loads. By analysing two different seam geometries, it could be shown that lower multi-axial stresses arise if a narrower weld groove is used. Comparative analyses revealed a direct correlation of the local residual stresses in the weld with transverse shrinkage restraint, whereas the residual stress level in the HAZ is significantly affected by the bending restraint of the weld construction and the occurring bending stresses, respectively. KW - Process parameters KW - Residual stresses KW - Restraint KW - GMAwelding KW - High-strength steels PY - 2018 U6 - https://doi.org/10.1007/s40194-018-0566-x SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 3 SP - 459 EP - 469 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Steppan, E. A1 - Kannengießer, Thomas A1 - Steger, J. T1 - Hydrogen trapping in T24 Cr-Mo-V steel weld joints - microstructure effect vs. experimental influence on activation energy for diffusion N2 - Hydrogen-assisted cracking is a critical combination of local microstructure, mechanical load and hydrogen concentration. Welded microstructures of low-alloyed creep-resistant Cr-Mo-V steels show different hydrogen trapping kinetics. This influences the adsorbed hydrogen concentration as well as the diffusion by moderate or strong trapping. A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. Finally, realistic temperature assessment is mandatory for calculation of activation energy via TDA. KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Thermal desorption analysis KW - Welding KW - Microstructure KW - Diffusion PY - 2018 U6 - https://doi.org/10.1007/s40194-017-0546-6 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 2 SP - 277 EP - 287 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Duprez, Lode T1 - Hydrogen distribution in multi-layer welds of steel S960QL N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa have increasing importance in steel construction and civil engineering. However, weld processing of those steels is a major challenge. The susceptibility for degradation of mechanical properties of weld joints significantly increases in presence of hydrogen and can result in hydrogen assisted cracking (HAC). Generally, risk for HAC increases with increasing yield strength of HSLA steels. To minimize the incidence of HAC, it is essential to gain knowledge about both the (1) absorbed hydrogen amount and its distribution in the weld seam and (2) options to lower the amount of introduced hydrogen. Existing standards recommend heat treatment procedures (interpass temperature or post weld heat treatment) to reduce the diffusible hydrogen concentration in weldments. In this context, different weld seam geometries should be considered. For HSLA steel fabrication weld processing with seam opening angles of 45° to 60° is typical. Modern weld technologies allow welding with seam opening angles of 30° - reduced welding time and costs. In the present study, the hydrogen distribution in multi-layer welds of a 960 MPa HSLA steel was analysed. Influence of different seam opening angles as well as heat input, interpass temperature and post weld heat treatments were investigated. The welded samples were quenched in ice water immediately after welding and subsequently stored in liquid nitrogen. After defined warming up, small specimens were machined from the weld seam by water jet cutting. The diffusible hydrogen concentration was measured by carrier gas hot extraction with coupled mass spectrometer. The results showed, that low heat input and post weld heat treatment procedures can lower hydrogen concentrations in welds. Furthermore, a gradient of the hydrogen concentration was identified with increasing weld pool depth. By varying the seam opening angles different hydrogen concentrations were measured. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen concentration KW - Welding KW - High-strength steel KW - Heat treatment KW - carrier gas hot extraction PY - 2018 SN - 978-9-08179-422-0 SP - P44 AN - OPUS4-45358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, L. A1 - Kannengießer, Thomas T1 - lnfluence of microalloy design on heat-affected zone toughness of S690QL steels N2 - Three high-strength Nb-,.Ti- and Ti+ V-bearing S690QL steels were welded to investigate and compare the effects of microalloy addition on heat-affected zone (HAZ) toughness. Charpy V notch impact tests from three microalloyed welds under different cooling rates have been performed. Fractographic examination shows that several factors, including large-sized grain, upper bainite or hard second phase, interact to determine brittle fracture and impaired toughness in Nb-bearing weld with high heat input. In contrast to this reduced toughness, Ti-bearing welds exhibits satisfied toughness regardless of at fast or slow cooling. This is attributed to its limited austenite grain and refines favorable intragranular acicular ferrite structure. Moreover, in the case of such refined structure as matrix, TiN particles are found to be irrelevant to the facture process. The crystallographic results also confirm that high-angle boundaries between fine ferrites plates provide effective barriers for crack propagation and contribute to improved toughness. KW - High-strength steels KW - Microalloyed steels KW - Toughness KW - Cooling rate KW - Microstructure PY - 2018 U6 - https://doi.org/10.1007/s40194-018-0558-x VL - 62 IS - 2 SP - 339 EP - 350 PB - Springer CY - Heidelberg, Germany AN - OPUS4-44792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Griesche, Axel T1 - Tungsten inert gas bead-on-plate weld chemical composition analysis by laser-induced breakdown spectroscopy N2 - Chemical compositions of a weld can be varying locally as a result of the welding process. These local variations can be due to the vaporization of individual alloying elements. In this work, tungsten inert gas (TIG) bead-on-plate stainless steel welds of EN grade 1.4404 and 1.4435 were investigated using laser-induced breakdown spectroscopy (LIBS) on the completed welds. This study aims to reveal the welding parameters’ influence on the resulting local chemical compositions of the stainless steel welds. We demonstrated Mn vaporize before Cr due to its lower latent enthalpy of vaporization. Hence, Mn accumulates on the heat-affected zone (HAZ) both sides across the weld bead by being swept away through the circulation flow of the welding plasma. Additionally, increasing the heat input tends to enhance the accumulated Mn content on the HAZ as well as increasing the shielding gas flow rate. The results are in good agreement with the literature and proved that LIBS is an effective method to inspect completed welds. T2 - Symposium on Materials and Joining Technology CY - Magdeburg, Germany DA - 07.09.2020 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511595 SN - 1757-8981 SN - 1757-899X VL - 882 IS - 012023 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-51159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Ernst, W. A1 - Spindler, H. A1 - Kannengießer, Thomas T1 - Hydrogen-assisted cracking of GMA welded 960 MPa grade high-strength steels N2 - High-strength steels with yield strength of 960 MPa are susceptible to hydrogen-assisted cracking (HAC) during welding processing. In the present paper, the implant test is used to study HAC in a quenched and tempered steel S960QL and a high-strength steel produced by thermo-mechanical controlled process S960MC. Welding is performed using the gas metal arc welding process. Furthermore, diffusible hydrogen concentration (HD) in arc weld metal is determined. Based on the implant test results, lower critical stress (LCS) for complete fracture, critical implant stress for crack initiation, and embrittlement index (EI) are determined. At HD of 1.66 ml/100 g, LCS is 605 MPa and 817 MPa for S960QL and S960MC, respectively. EI is 0.30 and 0.46 for S960QL and S960MC, respectively. Fracture surfaces of S960QL show higher degradation with reduced deformation. Both, higher EI of S960MC and fractography show better resistance to HAC in the HAZ of S960MC compared to S960QL. KW - High-strength steel KW - Welding KW - Diffusible hydrogen KW - Hydrogen-assisted cracking KW - Heat-affected zone KW - Implant test PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510307 SN - 0360-3199 VL - 45 IS - 38 SP - 20080 EP - 20093 PB - Elsevier Ltd CY - Amsterdam, NL AN - OPUS4-51030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -