TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Selleng, Christian A1 - Stöcker, T. A1 - Moos, R. A1 - Rabe, Torsten T1 - Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9 JF - Journal of Electroceramics N2 - Calcium cobaltite is one of the most promising oxide p-type thermoelectric materials. The solid-state reaction (or calcination, respectively), which is well known for large-scale powder synthesis of functional materials, can also be used for the synthesis of thermoelectric oxides. There are various calcination routines in literature for Ca3Co4O9 powder synthesis, but no systematic study has been done on the influence of calcination procedure on thermoelectric properties. Therefore, the influence of calcination conditions on the Seebeck coefficient and the electrical conductivity was studied by modifying calcination temperature, dwell time, particle size of raw materials and number of calcination cycles. This study shows that elevated temperatures, longer dwell times, or repeated calcinations during powder synthesis do not improve but deteriorate the thermoelectric properties of calcium cobaltite. Diffusion during calcination leads to idiomorphic grain growth, which lowers the driving force for sintering of the calcined powder. A lower driving force for sintering reduces the densification. The electrical conductivity increases linearly with densification. The calcination procedure barely influences the Seebeck coefficient. The calcination procedure has no influence on the phase formation of the sintered specimens. KW - Thermoelectrics KW - Calcination KW - Calcium Cobaltite KW - Solid-State-Synthesis KW - Reaction-sintering PY - 2018 DO - https://doi.org/10.1007/s10832-018-0124-3 SN - 1385-3449 SN - 1573-8663 VL - 40 IS - 3 SP - 225 EP - 234 PB - Springer AN - OPUS4-44336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen A1 - Kühn, Hans-Joachim ED - Schmauder, S. ED - Chawla, K. K. ED - Chawla, N. ED - Chen, W. ED - Kagawa, Y. T1 - High temperature mechanical testing of metals T2 - Handbook of Mechanics of Materials N2 - Performing mechanical tests at high temperatures is a nontrivial issue: Compared to room temperature testing, additional phenomena like time-dependent Deformation processes and oxidation effects raise the complexity of the material’s response, while more sophisticated test setups and additional control parameters increase the number of potential sources of error. To a large extent, these complications can be overcome by carefully following all recommendations given in the respective high temperature testing standards, but more comprehensive background information helps to identify points of specific importance in particular test campaigns. In this chapter, an overview is given on general high temperature testing issues like the appropriate choice of experimental equipment and key aspects of temperature measurement. In subsequent sections, the major static and dynamic high temperature test methods are reviewed and their Special features, as compared to testing at room temperature, are highlighted based on example data sets. Influences of specimen size and environmental effects are shortly outlined in a concluding section. In the whole chapter, a focus is set on testing of “classical” metallic high temperature materials, but many considerations are equally valid for testing of intermetallics, composites, and high temperature ceramics. KW - Creep, Creep Rupture, and Stress Rupture KW - Relaxation tests KW - Low Cycle Fatigue (LCF) KW - Thermomechanical Fatigue (TMF) KW - Fatigue crack propagation PY - 2018 SN - 978-981-10-6855-3 DO - https://doi.org/10.1007/978-981-10-6855-3_44-1 SP - 1 EP - 38 PB - Springer Nature Singapore Pte Ltd. CY - Singapore AN - OPUS4-44349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive Manufacturing of Dense Ceramics with Laser Induced Slip Casting (LIS) N2 - The possibility to produce dense monolithic ceramic parts with additive manufacturing is at the moment restricted to small parts with low wall thickness. Up to now, the additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - 42nd International Conference and Expo on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - Ceramics PY - 2018 AN - OPUS4-44182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul A1 - Dümichen, Erik A1 - Braun, Ulrike T1 - Kunststoffgehalte schnell bestimmen mit der TED-GC-MS N2 - Der Vortrag behandelt die Analyse von Kunststoffen in Umweltproben mit dem thermischen Verfahren TED-GC-MS. Das Verfahren und dessen Funktionsweise werden vorgestellt, erfolgte Optimierungen, Verfahrenskenndaten sowie Möglichkeiten der Quantifizierung behandelt. T2 - Projektübergreifendes Mikroplastikseminar BASEMAN, BONUS MICROPOLL, MiWa CY - Berlin, Germany DA - 16.10.2017 KW - Mikroplastik KW - Analyse KW - TED-GC-MS PY - 2018 AN - OPUS4-43927 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. A1 - Kalinka, Gerhard T1 - Helical zirconia (TZP) springs manufacturing and testing under mechanical and thermal load N2 - Helical springs with a rectangular cross-section have been machined from sintered and grinded hollow cylinders with high geometrical precision and good reproducibility. Such springs made from tetragonal zirconia polycrystal (TZP) ceramic show excellent edge quality because of high fracture toughness and bending strength of the starting material. Hence, springs with desired geometric dimension and tailored spring constant can be manufactured for highly demanding applications at high temperatures and in harsh environments. Prior to any practical use, application limits of springs under mechanical and thermal load have to be analyzed. Therefore, different displacement experiments were carried out on the helical TZP springs. - Dynamic displacement tests at various temperatures from -15°C to +60°C using a piezo actor to load/unload springs with frequencies between 1 and 40 Hz: Springs remained undamaged and the spring constants were not altered, even after more than one million cycles of compression loading. - Long-time displacement measurements under static tensile loading at room temperature with a high-precision interferometer test facility: Significant spring elongation under constant strain was surprisingly proved over a period of many hours already at room temperature. - Creeping experiments for 48 h under static compression load at different temperatures up to 1000 °C: After cooling down and load removing no permanent length reduction of springs was observed for test temperatures up to 700 °C. However, reshaping of TZP springs by plastic deformation is possible at higher temperatures and opens up additional possibilities for spring design and manufacturing. T2 - German Ceramic Society, Annual Meeting 2018 CY - München, Germany DA - 09.04.2018 KW - Ceramic springs KW - Manufacturing KW - Mechanical and thermal testing PY - 2018 AN - OPUS4-44728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Schriever, Sina A1 - Augenstein, E. A1 - Karlin, J. A1 - Piesker, Benjamin A1 - Schweizer, Ch. A1 - Skrotzki, Birgit T1 - Lebensdauerberechnung von Aluminium-Radialverdichterrädern unter Berücksichtigung der Werkstoffalterung T2 - Tagungsband R583 FVV Frühjahrstagung 2018 N2 - In this project, a procedure was developed to improve the lifetime assessment precision of exhaust turbo charger radial compressor wheels made from the age hardenable aluminum alloy EN AW-2618A. This comprises particularly the consideration of material aging, which has to be anticipated during operation of such components under relevant service conditions (temperature, time, stress). First of all, a solid experimental database was established for the investigated material. This includes a mechanical as well as a microstructural characterization of the as-received state (T61) and after aging up to 25,000 h at relevant service temperatures (160 °C, 180 °C, 190 °C). The microstructural investigations focused on the development of the radii of the cylindrical hardening phase, which coarsens during aging. The relation between aging temperature, time and mechanical load (if applicable) was established for the first time to this extent. An interrelationship to describe the coarsening was established. The effect of aging on hardness, strength, creep behavior and fatigue lifetime (LCF, TMF) was studied and a correlation to the microstructure was established. The results of the creep tests were used to calibrate a modified hyperbolic sine creep model. A time and temperature dependent deformation model according to Chaboche, which describes the relevant phenomena of high temperature deformation and cyclic plasticity, was extended. It now considers material aging by describing the strength not only as a function of temperature but also as a function of aging, i.e. of the mean radius of the precipitates. A similar procedure was applied to extend the model in order to assess the fatigue lifetime. The calculated lifetimes of LCF and TMF tests completed during this project match well with the experimental results. Only one LCF test with a hold time of 900 s in tension deviates clearly from the mean value and shows the limits of the time independent damage model. Tests with shorter hold times of 60 s are within the scatter band, likewise the different aging conditions. A damage accumulation model additionally describing the progressive aging during lifetime was developed and implemented. Besides considering aging in the deformation and lifetime assessment, it is also possible to judge complex loading cycles in a postprocessing by rain flow classification of typical complex loading cycles. The methodology and the models were implemented into the Finite-Element software Abaqus and Ansys and are available for numerical assessment of components. N2 - In diesem Forschungsvorhaben wurde ein Verfahren entwickelt, um die Genauigkeit der Lebensdauerbewertung für Abgasturbolader (ATL)-Verdichterräder aus der ausscheidungs-härtbaren Aluminiumlegierung EN AW-2618A zu verbessern. Dies umfasst insbesondere die Berücksichtigung der Werkstoffalterung, mit der beim Einsatz dieser Bauteile unter entsprechender Betriebsbeanspruchung (Temperatur, Zeit, Spannung) gerechnet werden muss. Zunächst wurde eine solide experimentelle Datenbasis für den untersuchten Werkstoff geschaffen. Dies umfasste sowohl eine mechanische als auch eine mikrostrukturelle Charakterisierung des Ausgangszustands (T61) sowie von ausgelagerten Zuständen bis zu 25.000 h bei betriebsrelevanten Temperaturen (160 °C, 180 °C, 190 °C). Bei den Untersuchungen zur Mikrostruktur wurde der Fokus auf die Entwicklung der Radien der stäbchen-förmigen aushärtenden Phase gelegt, die während der Alterung vergröbern. Der Zusammenhang zwischen Auslagerungstemperatur, -zeit und ggfs. mechanischer Belastung wurde erstmals in diesem Umfang quantifiziert und entsprechende Gesetzmäßigkeiten zur Beschreibung der Vergröberung ermittelt. Vergleichend dazu wurde der Einfluss der Alterung auf die Härte, die Festigkeit, das Kriechverhalten und die Ermüdungslebensdauer (LCF, TMF) bestimmt, so dass eine Korrelation zur Mikrostruktur vorliegt. Die Ergebnisse der Kriechversuche wurden zur Kalibrierung eines modifizierten Sinus-hyperbolicus-Kriechmodells verwendet. Ein zeit- und temperaturabhängiges Verformungsmodell nach Chaboche, welches die wesentlichen Phänomene der Hochtemperaturverformung und der Wechselplastizität beschreibt, wurde erweitert und berücksichtigt nun die Werkstoffalterung, indem die Festigkeit nicht nur als Funktion der Temperatur, sondern auch des Alterungszustands (d. h. des mittleren Radius der Ausscheidungen) dargestellt wird. Für die Erweiterung des Modells zur Bewertung der Ermüdungslebensdauer wurde analog verfahren. Die berechnete Lebensdauer der im Verlauf des Vorhabens durchgeführten LCF- und TMF-Versuche stimmt gut mit den experimentellen Ergebnissen überein. Lediglich ein LCF-Versuch mit einer Haltezeit von 900 s im Zug weicht deutlich vom Mittelwert ab und zeigt die Grenzen des zeitunabhängigen Schädigungsmodells auf. Versuche mit kürzeren Haltezeiten bis zu 60 s liegen im Streuband, ebenso die verschiedenen Alterungszustände. Eine Schädigungsakkumulation unter Berücksichtigung der fortschreitenden Alterung über der Lebensdauer wurde entwickelt und implementiert. Neben der Berücksichtigung der Alterung in der Verformungs- und Lebensdaueranalyse besteht auch die Möglichkeit, komplexe Belastungszyklen in einem Postprozessing zu bewerten, indem Rainflow-Klassierungen typischer komplexer Belastungszyklen vorgenommen werden. Die Methodik und die Modelle wurden in die Finite-Elemente-Programme Abaqus und Ansys implementiert und stehen für die rechnerische Bewertung von Bauteilen zur Verfügung. T2 - FVV Frühjahrstagung 2018 CY - Bad Neuenahr, Germany DA - 22.03.2018 KW - Aluminium KW - Centrifugal compressor wheel KW - Dark-field transmission electron microscopy (DFTEM) KW - Degradation KW - S-phase PY - 2018 SP - 97 EP - 130 AN - OPUS4-44604 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures T2 - ECCM18 - 18th European conference on composite materials (proceedings) N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 SP - 1 EP - 7 PB - European society for composite materials AN - OPUS4-45338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 AN - OPUS4-45346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 T2 - Proceedings ECNDT2018 N2 - Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in the bulk of IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Göteborg, Sweden DA - 11.06.2018 KW - Residual stress KW - Selective laser melting KW - Neutron diffraction KW - IN718 PY - 2018 UR - http://cdn.ecndt2018.com/wp-content/uploads/2018/05/ecndt-0315-2018-File001.pdf SP - 1 AN - OPUS4-45325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Pressure-assisted sintering of tape cast calcium cobaltite for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by using the Seebeck effect. Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and morphology of Ca3Co4O9 are strongly anisotropic because of its crystal structure of alternating layers of CoO2 and Ca2CoO3. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Pressure-assisted sintering (PAS), as known from large-scale production of low temperature co-fired ceramics, was used to sinter multilayers of Ca3Co4O9 green tape at 900 °C with different pressures and dwell times. In-situ shrinkage measurements, microstructural investigations and electric measurements were performed. Pressure-less sintered multilayers have a 2.5 times higher electrical conductivity at room temperature than dry pressed test bars with randomly oriented particles. The combination of tape casting and PAS induces a pronounced alignment of the anisotropic grains. Relative density increases from 57 % after free sintering for 24 h to 94 % after 2 h of PAS with 10 MPa axial load. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity (at 25°C) improves by a factor of 15 compared to test bars with randomly oriented particles. The high temperature thermoelectric properties show the same dependencies. The smaller the applied axial load, the lower the relative densities, and the lower the electrical conductivity. Longer dwell times may increase the density and the electrical conductivity significantly if the microstructure is less densified as in the case of a small axial load like 2 MPa. At higher applied pressures the dwell time has no significant influence on the thermoelectric properties. This study shows that PAS is a proper technique to produce dense Ca3Co4O9 panels with good thermoelectric properties similar to hot-pressed tablets, even in large-scale production. T2 - Electroceramics XVI CY - Hasselt, Belgium DA - 09.07.2018 KW - Texturation KW - Hot Press KW - Calcination KW - Multilayer PY - 2018 AN - OPUS4-45491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - LSD- 3D printing: Powder based Additive Manufacturing, from porcelain to technical ceramics N2 - Powder based Additive Manufacturing (AM) processes are widely used for metallic and polymeric materials, but rarely commercially used for ceramic materials, especially for technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. Technical ceramics powders are in fact typically very fine and poorly flowable, which makes them not suitable for AM. The layerwise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for powder based AM. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder This allows the use of fine powders and achieves high packing density (55-60%) in the layers after drying. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to *Denotes Presenter 42nd International Conference & Exposition on Advanced Ceramics & Composites 127 Abstracts the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 42nd International Conference & Exposition on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - 3D printing KW - Ceramic KW - Alumina KW - Porcelain KW - Silicon Carbide PY - 2018 AN - OPUS4-44017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuerlein, C. A1 - Finn, Monika A1 - Meyer, Christian A1 - Lackner, F. A1 - Savary, F. A1 - Rehmer, Birgit T1 - Thermomechanical Behavior of the HL-LHC 11 Tesla Nb3Sn Magnet Coil Constituents During Reaction Heat Treatment JF - IEEE Transactions on applied superconductivity N2 - The knowledge of the temperature-induced changes of the superconductor volume and of the thermomechanical behavior of the different coil and tooling materials is required for predicting the coil geometry and the stress distribution in the coil after the Nb3Sn reaction heat treatment. In this paper, we have measured the Young’s and shear moduli of the HL-LHC 11 T Nb3Sn dipole magnet coil and reaction tool constituents during in situ heat cycles with the dynamic resonance method. The thermal expansion behaviors of the coil components and of a free standing Nb3Sn wire were compared based on dilation experiments. KW - Superconducting magnet KW - Young`s modulus KW - Thermal expansion KW - Stress-strain-behavior PY - 2018 DO - https://doi.org/10.1109/TASC.2018.2792485 SN - 1051-8223 SN - 1558-2515 VL - 28 IS - 3 SP - 4003806 - 1 EP - 4003806 - 6 PB - IEEE Council on Superconductivity CY - New York AN - OPUS4-44020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wisniewski, W. A1 - Thieme, C. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Groß-Barsnick, S.-M. A1 - Rüssel, C. T1 - Oriented surface nucleation and crystal growth in a 18BaO·22CaO·60SiO2 mol% glass used for SOFC seals JF - CrystEngComm N2 - A glass of the composition 37BaO·16CaO·47SiO2 wt% produced on an industrial scale is crystallized at 970 °C for times ranging from 15 min to 2 h. The crystallization at the immediate surface as well as the crystal growth into the bulk are analyzed using scanning electron microscopy (SEM) including energy dispersive X-ray spectroscopy (EDXS) and electron backscatter diffraction (EBSD) as well as X-ray diffraction in the Θ–2Θ setup (XRD). The immediate surface shows the oriented nucleation of walstromite as well as the formation of wollastonite and an unknown phase of the composition BaCaSi3O8. All three phases also grow into the bulk where walstromite ultimately dominates the kinetic selection and grows throughout the bulk due to a lack of bulk nucleation. Walstromite shows systematic orientation changes as well as twinning during growth. A critical analysis of the XRD-patterns acquired from various crystallized samples indicates that their evaluation is problematic and that phases detected by XRD in this system should be verified by another method such as EDXS. KW - Glass KW - Surface nucleation KW - Orientation KW - EBSD PY - 2018 DO - https://doi.org/10.1039/c7ce02008b VL - 20 IS - 6 SP - 787 EP - 795 PB - Royal Society of Chemistry AN - OPUS4-44405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Niedrigsinterndes CaMnO3 für thermoelektrische Anwendungen N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. N2 - Thermoelektrische Materialien können durch die Nutzung des Seebeckeffektes einen Temperaturunterschied direkt in eine Spannung umwandeln. Calciumcobaltit (p-typ) und Calciummanagant (n-typ) sind 2 der vielversprechendsten oxidischen thermoelektrischen Materialien. Für die Entwicklung von kostengünstigen Multilayergeneratoren ist das Co-sintern dieser beiden Materialien notwendig und deshalb eine Anpassung der Sintertemperatur nötig. Calciummangant wird herkömmlicherweise zwischen 1200°C und 1350°C gesintert. Calciumcobaltit erfährt einen ungewünschte Phasenumwandlung bei 926°C, es kann allerding bei 900°C unter 7.5MPa zu 95% dicht gesintert werden. Demzufolge, ist eine Co-sintertemperatur von 900°C anzustreben. Aus diesem Grund wurden mehrere Strategien zur Absenkung der Sintertemperatur von Calciummanaganat untersucht. Zum einen die Zugabe niedrigschmelzender Additive, zum anderen die Zugabe von Additiven, die eine eutektische Schmelze bilden. Es konnte gezeigt werden, dass für Calciummanganat die Verwendung von eutektischen Schmelzen besser geeignet ist als die Verwendung von niedrigschmelzenden Additiven um die Sintertemperatur zu senken.“ T2 - Seminar des Lehrstuhls für Funktionsmaterialien CY - Universität Bayreuth, Bayreuth, Germany DA - 22.06.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-45281 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminum alloy EN AW 2618A at 190 °C N2 - Ther results of research on correlation of precipitate size Evolution and the creep rate of the Aluminium alloy EN AW 2618A at 190 °C was presented. T2 - ICAA16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Creep KW - Aluminium KW - Coarsening PY - 2018 AN - OPUS4-45283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Skrotzki, Birgit T1 - Correlation of the precipitate size evolution and the creep rate of the aluminium alloy EN AW 2618A at 190 °C T2 - Proceedings of the International Conference on Aluminium Alloys 16 N2 - A short description of the work done on the topic "Correlation of the precipitate size evolution and the creep rate of the aluminium alloy EN AW 2618A at 190 °C" is given. T2 - International Conference on Aluminium Alloys 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Degradation KW - Aluminium KW - Creep KW - Coarsening PY - 2018 SN - 978-1-926872-41-4 SP - 99 AN - OPUS4-45284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Augenstein, E. A1 - Skrotzki, Birgit T1 - Long term ageing of alloy 2618A T2 - Proceedings of the International Conference on Aluminium Alloys 16 N2 - The result of an Investigation of the "Long term ageing of alloy 2618A" are discussed. T2 - International Conference on Aluminium Alloys 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2818A KW - Aluminium KW - Coarsening KW - Transmission electron microscopy KW - S-phase PY - 2018 SP - Paper 400101 AN - OPUS4-45287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Augenstein, E. A1 - Skrotzki, Birgit T1 - Long term ageing of alloy 2618A N2 - Results of the in vestigation of the "Long term ageing of alloy 2618A" were presented. T2 - ICAA 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Aluminium KW - Coarsening KW - Transmission electron microscopy KW - S-phase PY - 2018 AN - OPUS4-45288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Bokstein, B. A1 - Svetlov, I. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. A1 - Viguier, B. A1 - Poquillon, D. T1 - A vacancy model for pore annihilation during hot isostatic pressing of single-crystal nickel-base superalloys JF - Inorganic Materials: Applied Research N2 - An improved diffusion model is proposed for pore annihilation during HIP of single-crystal nickel-base superalloys. The model assumes the pore dissolution by emission of vacancies and their sink to the low angle boundaries. Calculation, considering distribution of the pore sizes, predicts the kinetics of pore annihilation similar to the experimental one. KW - Single crystal superalloys KW - Hot isostatic pressing (HIP) KW - Porosity KW - Diffusion KW - Vacancies PY - 2018 DO - https://doi.org/10.1134/S2075113318010100 SN - 2075-1133 VL - 9 IS - 1 SP - 57 EP - 65 PB - Pleiades Publishing, Ltd. AN - OPUS4-43990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - von Hartrott, P. A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Comparison of long-term radii evolution of the S-phase in aluminum alloy 2618A during ageing and creep JF - Materials Science & Engineering A N2 - A study was made on the effect of creep loading on the precipitate radii evolution of the aluminum alloy 2618A. The overageing process of the alloy was investigated under load at a temperature of 190 °C with stresses between 79 and 181 MPa and compared to stress free isothermal ageing. The precipitates responsible for strength were characterized using dark-field transmission electron microscopy (DFTEM). This allows the experimental Determination of radii distributions of the rod-shaped Al2CuMg precipitates and the evaluation regarding their mean precipitate radius. It was found that the mean precipitate radius enables the comparison of the different microstructural conditions of crept and uncrept samples. The mean precipitate radii of the samples experiencing creep are significantly higher than those of undeformed samples. It was shown that the acquired radii distributions are viable to determine averaged particle radii for comparison of the aged samples. A ripening process including pipe diffusion along dislocations describes the data on coarsening very well for the creep samples. KW - Aluminum alloys KW - Electron microscopy KW - Aging KW - Creep KW - Microstructure KW - S-Phase PY - 2018 DO - https://doi.org/10.1016/j.msea.2018.01.033 SN - 0921-5093 VL - 716 SP - 78 EP - 86 PB - Elsevier B. V. AN - OPUS4-44090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Güther, Wolfgang A1 - Rabe, Torsten T1 - Strategies to improve spray dried multi-component granules N2 - Dry pressing of ceramic materials requires homogeneously soft granules with good flowability to allow rapid die filling and to avoid packing defects. Spray-drying granulation appears to be the best method for obtaining granules with high flowability in industrial scale. But, strength reducing internal microstructural defects caused by spray-dried granules with hollow and hard shells are often observed using nano and/or multi-component starting powders. Using the example of a ZTA composite, the potential of slurry optimization, ultrasound atomization and infrared drying for better granule properties and compaction behavior were investigated. Starting granules produced in a conventional spray dryer (Niro, Denmark) with a two fluid nozzle showed typical defects like large central pores and dimples. The early step of slurry preparation already possesses an essential optimization possibility in the form of stability adjustments. Granule compaction was clearly improved upon a specific reduction in slurry stability. The second optimization opportunity to improve the granule quality was the atomization step. Implementation of an ultrasound atomizing unit into the conventional spray dryer positively affected granule size distribution and therefor flowability and as well granule yield. But, a combination of both process optimizations delivered the best sinter bodies with highest density and strength due to further reduction in maximum size and fraction of pores. As last step of a spray drying process, the drying is the focus of further investigations. A current setup implying a spray dryer prototype utilizes stacked infrared heater in a countercurrent setup delivering a further increase in granule yield and enduring spraying process stability. T2 - 93. Jahrestagung der Deutschen Keramischen Gesellschaft CY - München, Germany DA - 10.04.2018 KW - Spray drying KW - Granules KW - Destabilization KW - Ultrasound PY - 2018 AN - OPUS4-44700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Schriever, Sina A1 - Augenstein, E. A1 - Karlin, J. A1 - Piesker, Benjamin A1 - Schweizer, C. A1 - Skrotzki, Birgit T1 - Lifetime Assessment of Aluminium radial compressor wheels considering material ageing N2 - The results of the project "Lifetime Assessment of Aluminium radial compressor wheels considering material ageing" were presented. T2 - FVV Frühjahrstagung 2018 CY - Bad Neuenahr, Germany DA - 22.03.2018 KW - Alloy 2618A KW - Degradation KW - S-phase KW - Dark-field transmission electron microscopy KW - Aluminum PY - 2018 AN - OPUS4-44706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Failure of PE-HD induced by liquid media (ESC) N2 - As the well-known damage mechanisms slow crack growth (SCG) and environmental stress cracking (ESC) are the major causes for possible failure of polyolefin-based materials, especially for PE-HD, they are highly relevant and need to be considered thoroughly. Furthermore, due to slight but perceptible differences in damaging effect, a differentiation between SCG and ESC is expedient. SCG appears in “inert” or “neutral” media without a decisive influence of the surrounding medium whereas ESC occurs in “active” media, which influence the failure behavior and time to failure crucially. To characterize the inherent resistance of the material against those damage mechanisms, the well-established Full-Notch Creep Test (FNCT) is used. In this study, the FNCT – usually applied according to ISO 16770 [3] using a few universal model liquid media and mainly for pipe materials – is extended by investigations with appropriate parameters of selected relevant PE-HD container materials also in real media, such as the topical fuels diesel and biodiesel. The investigations were performed using a novel FNCT-device with 12 individual sub-stations, each equipped with individual electronic stress and temperature control and continuous online monitoring of the specimen elongation. Especially, mechanical stress and temperature were varied systematically during FNCT and time to failure values, time-dependent elongation data as well as detailed fracture surface analysis by laser scanning microscopy (LSM) were combined for the first time (Fig. 1). Particularly, the fracture surface analysis provides a sound basis to characterize failure behavior, mainly regarding the balance between brittle crack propagation and ductile deformation. Therefore, fracture surface analysis is an essential tool for a decent assessment of SCG and ESC by FNCT measurements. T2 - 17th International Conference on Deformation, Yield and Fracture of Polymers (DYFP) CY - Kerkrade, The Netherlands DA - 25.03.2018 KW - Environmental stress cracking (ESC) KW - PE-HD KW - Full Notch Creep Test (FNCT) KW - Imaging techniques KW - Brittle / ductile fracture behavior KW - Crack propagation analysis PY - 2018 AN - OPUS4-44617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Karlin, J. A1 - Skrotzki, Birgit A1 - Schweizer, C. T1 - Lebensdauerberechnung von Aluminium-Radialverdichterrädern unter Berücksichtigung der Werkstoffalterung N2 - Die Mikrostruktur von ausscheidungsgehärteten Aluminiumlegierungen ist von herausragender Bedeutung für ihre Festigkeit, da nur Werkstoffe mit gezielt eingestellter Mikrostruktur für Radialverdichterräder ausreichende Festigkeiten erreichen. Diese optimierte Mikrostruktur ändert sich jedoch während des Betriebs, denn die Bauteile werden bei Temperaturen eingesetzt, die nahe der Aushärtetemperatur liegen oder sogar darüber hinausgehen und folglich ist mit Alterung der Mikrostruktur und damit einhergehender Degradation der Eigenschaften zu rechnen. Diese Effekte konnten bisher in der Lebensdauervorhersage nicht berücksichtigt werden, da ihre diesbezüglichen Auswirkungen lediglich qualitativ bekannt waren. In diesem Forschungsvorhaben wurde daher für die Legierung EN AW-2618A einerseits eine sorgfältige und umfassende Charakterisierung der Gefügeentwicklung für anwendungsrelevante Temperaturen und Zeiten bis zu 25.000 h vorgenommen und andererseits eine solide Datenbasis bezüglich der mechanischen Eigenschaften (Zugfestigkeit, Kriechwiderstand, LCF-, TMF-Verhalten) und ihren Änderungen geschaffen. Darauf aufbauend wurde ein Verfahren entwickelt, um die Genauigkeit der Lebensdauerbewertung für Abgasturbolader (ATL)-Verdichterräder aus EN AW-2618A zu verbessern. Ein zeit- und temperaturabhängiges Verformungsmodell nach Chaboche, welches die wesentlichen Phänomene der Hochtemperaturverformung und der Wechselplastizität beschreibt, wurde erweitert und berücksichtigt nun die Werkstoffalterung, indem die Festigkeit nicht nur als Funktion der Temperatur, sondern auch des Alterungszustands (d. h. des mittleren Radius der Ausscheidungen) dargestellt wird. Für die Erweiterung des Modells zur Bewertung der Ermüdungslebensdauer unter Rainflow-klassierten Betriebslastkollektiven wurde analog verfahren. Die berechnete Lebensdauer der im Verlauf des Vorhabens durchgeführten LCF- und TMF-Versuche stimmt gut mit den experimentellen Ergebnissen überein. KW - Alloy 2618A KW - Degradation KW - Dark-field transmission electron microscopy (DFTEM) KW - S-Phase KW - Aluminum PY - 2018 SP - 1 EP - 123 AN - OPUS4-44618 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Influence of testing conditions on dielectric strength of alumina N2 - Dielectric strength testing of ceramics is simple and yet challenging. The execution of a breakthrough voltage measurement of a given sample is fast and straightforward. ASTM D149 describes the standardized procedure. But, there are versatile effects of test conditions and sample properties that affect the result of such a measurement. As one example, ASTM D149 allows different sizes of test electrodes and does not unambiguously prescribe the condition of the electrodes. Thus, different electrode configurations are used in the field. We conducted several test series on alumina samples to comprehensively quantify the effect of test conditions and sample properties on dielectric strength results. In our study, testing of alumina substrates using different electrode configurations resulted in differences of mean values of up to 20%. Further test series on alumina focused on the effect of voltage ramp rate. The results are complemented by calculations of failure probability at different voltage levels and corresponding withstand voltage tests. We conclude that a communication and comparison of single dielectric strength values is insufficient and may be misleading. A meaningful comparison of dielectric strength studies from different sources requires a thorough consideration of test conditions. T2 - 93rd DKG Annual Meeting CY - Munich, Germany DA - 10.04.2018 KW - Alumina KW - Dielectric strength KW - Withstand voltage tests PY - 2018 AN - OPUS4-44692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Cabeza, Sandra T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - WAM2018 CY - Grenoble, France DA - 09.04.2018 KW - Additive manufacturing KW - SLM KW - Residual stress KW - In718 PY - 2018 AN - OPUS4-44694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Surface-induced Crystallization of Glass N2 - Up to now, the mechanisms of surface nucleation and surface-induced texture formation are far from being understood. Corresponding phenomena are discussed hypothetically or even controversial, and related studies are restricted to very few glasses. In this talk the state of the art on mechanisms of surface nucleation are summarized. On one hand, mechanical damaged surfaces show high nucleation activity, at which the nucleation occurs at convex tips and edges preferentially. On the other hand, solid foreign particles are dominant nucleation sites at low damaged surfaces. They enable nucleation at temperatures even far above Tg. The nucleation activity of the particles is substantially controlled by their thermal and chemical durability. But no systematic studies on initially oriented crystal growth or nucleation from defined active nucleation sites have been pursued, so far. Therefore, the main objective of a just started project is to advance the basic understanding of the mechanisms of surface-induced microstructure formation in glass ceramics. We shall answer the question whether preferred orientation of surface crystals is the result of oriented nucleation or caused by other orientation selection mechanisms acting during early crystal growth. In both cases, crystal orientation may be caused by the orientation of the glass surface itself or the anisotropy and orientation of active surface nucleation defects. As a first attempt we focused on possible reorientation of separately growing surface crystals during early crystal growth. First results show clear evidence that separately growing crystals can reorient themselves as they are going to impinge each other. T2 - Glasforum der Deutschen Glastechnischen Gesellschaft (DGG) CY - Würzburg, Germany DA - 11.06.2018 KW - Crystallization KW - Silicate Glasses KW - Surface Nucleation PY - 2018 AN - OPUS4-45593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Feldmann, Ines A1 - Brauer, D.S. T1 - Sintering ability of fluoride-containing bioactive glass powder N2 - Sintered bioactive glass scaffolds of defined shape and porosity, e.g. made via additive manufacturing, must provide sufficient bioactivity and sinterability. As higher bioactivity is often linked to high corrosion and crystallization tendency, a certain compromise between sintering ability and bioactivity is therefore required. Groh et al. developed a fluoride-containing bioactive glass (F3), which allows fiber drawing and shows a bioactivity well comparable to that of Bioglass®45S5. To study whether and to what extent the sinterability of F3 glass powder is controlled by particle size, coarse and fine F3 glass powders (300-310µm and 0-32µm) were prepared by crushing, sieving and milling. Sintering, degassing and phase transformation during heating were studied with heating microscopy, vacuum hot extraction (VHE), DTA, XRD, and SEM. For the coarse glass powder, sintering proceeds slowly and is limited by surface crystallization of primary Na2CaSi2O6 crystals. Although the crystallization onset of Na2CaSi2O6 is shifted to lower temperature, full densification is attained for the fine powder. This finding indicate that certain porosity might be tuned via particle size variation. Above 900°C, intensive foaming is evident for the fine powder. VHE studies revealed that carbon species are the main foaming source. T2 - 92. Glastechnische Tagung CY - Bayreuth, Germany DA - 28.05.2018 KW - Sintering KW - Bioactive glass KW - Crystallization PY - 2018 AN - OPUS4-45568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behrens, H. A1 - Bauer, U. A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Müller, Ralf A1 - Deubener, J. T1 - Structural relaxation mechanisms in hydrous sodium borosilicate glasses JF - Journal of Non-Crystalline Solids N2 - Borosilicate glasses (16Na2O–10B2O3–74SiO2, NBS) with water contents up to 22 mol% H2O were prepared to study the effect of water on structural relaxation using DTA, viscometry and internal friction measurements. The results show that the glass transition temperature Tg of DTA and the isokom temperature T12, of viscometry are in excellent agreement, confirming the equivalence of enthalpy and viscous relaxation for NBS glass. Combining Tg data with water speciation data demonstrates that OH groups are mainly responsible for the decrease of Tg with increasing hydration, while molecular water plays only a minor role. Internal friction spectra at 7.125 Hz confirm the decisive influence of water on mechanical relaxation. The temperature range of α-relaxation (glass transition) strongly decreases while two β-relaxation peaks (sub-Tg) progressively appear with increasing water content. A high temperature β-relaxation peak, attributed to the presence of OH groups, shifts from 670 to 450 K as total water content increases from 0.01 to 5 wt%. A low temperature β-relaxation peak, attributed to molecular water, appears at 380 K and 330 K in glasses containing 3 and 5 wt% H2O, respectively. These findings suggest that relaxation mechanism of different hydrous species at low temperature may contribute to fatigue of stressed glasses. KW - Borosilicate glass KW - Water KW - Relaxation KW - Internal friction KW - Glass transition PY - 2018 DO - https://doi.org/10.1016/j.jnoncrysol.2018.05.025 VL - 497 SP - 30 EP - 39 PB - Elsevier B.V. AN - OPUS4-45608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, R. A1 - Rabe, Torsten T1 - Lowering the sintering temperature of calcium manganate CaMnO3 for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. T2 - 93. DKG-Jahrestagung und Symposium Hochleistungskeramik 2018 CY - Munich, Germany DA - 10.04.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-44818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viguier, B. A1 - Poquillon, D. A1 - Ruffini, A. A1 - Le Bouar, Y. A1 - Finel, A. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Ijaz, M. T1 - Etude expérimentale des mécanismes de fermeture des pores par CIC dans un superalliage monocristallin CMSX4 N2 - Data about the creep behaviour of metals and their alloys at temperatures close to the melting point are very limited. The reason is that most engineering alloys are used at temperatures below 0.6-0.8 of their melting point, so, investigation of creep at higher temperatures has no practical relevance. For some special applications however it is important, in our case hot isostatic pressing (HIP) of singlecrystal turbine blades cast from nickel-base superalloys. In order to remove porosity the blades are HIPed at temperatures between -solvus and solidus where superalloy has no strengthening -phase and therefore is very soft. For example, the company Howmet Castings HIPs the superalloy CMSX-4 at the temperature 1288°C, which corresponds to a homologous temperature of about 0.97=1561 K/1612 K (solidus temperature). Knowledge about the creep behaviour of CMSX-4 at this temperature and understanding of the creep mechanisms are necessary to model the kinetics of pore closure during HIPing as well as to plan the parameters of the HIP process. N2 - Les aubes de turbines à gaz utilisées en particulier pour les turboréacteurs de l’aéronautique sont élaborées par fonderie en superalliage monocristallin à base de nickel. Le procédé de fonderie, ainsi que les traitements thermique d’homogénéisation réalisés à très haute température, induisent la présence de pores au sein des pièces qui affectent les propriétés mécaniques et la durée de vie des aubes. Afin de réduire cette porosité les motoristes effectuent un traitement de compression isostatique à chaud (CIC) au cours duquel la porosité diminue par fermeture des pores. Afin de mieux comprendre les mécanismes impliqués au cours du traitement de CIC, nous avons lancé un programme de recherche dans le cadre du projet ERA-Net MICROPORE. La modélisation par champ de phase des mécanismes en jeu est présentée au cours de ce colloque. Nous présentons dans cette affiche un des volets de la caractérisation expérimentale du projet. Des échantillons de superalliage CMSX4 sont observés après traitement de mise en solution et CIC sous 103 MPa à 1288°C pour différentes durées. Les pores présents sont caractérisés par microscopie électronique à balayage (MEB) afin de suivre l’évolution du taux de porosité au cours du traitement. Une caractérisation plus détaillée de pores partiellement refermés est menée par MEB et grâce à la diffraction des électrons rétrodiffusés (EBSD). Une vision tridimensionnelle de ces défauts est obtenue par des coupes métallographiques effectuées par découpe ionique (FIB). Le projet ERA – Net MICROPORE est financé en Allemagne par la DFG (projects EP 136/1-1 and FE933/2-1) et en France par l’ANR (projects ANR15-MERA-000-03 and ANR15-MERA-0003-04). T2 - Plasticité 2018 CY - Nancy, France DA - 09.04.2018 KW - Creep KW - CMSX4 KW - Superalloy KW - Dislocations PY - 2018 AN - OPUS4-44827 LA - fra AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Kailas, Satish A1 - Szpunar, Jerzy A1 - Suwas, Satyam T1 - Development of microstructure and texture during single and multiple pass friction stir processing of a strain hardenable aluminium alloy JF - Materials Characterization N2 - In the present study, microstructure and texture development during single and multiple pass friction stir processing (FSP) of a strain hardenable wrought AlMg alloy (AA5086) was investigated. Subtle differences were observed while comparing with heat treatable alloys in the nucleation mechanism of the recrystallized microstructure observed in the nugget zone. Strain induced boundary migration was the dominant mechanism of microstructure evolution in the alloy, which influenced the crystallographic texture development by weakening it. Micro-texture measurements reveal variations in the crystallographic texture along the thickness of the sample. Recrystallization texture components were observed in the nugget zone indicative of a pronounced static recrystallization in the alloy as compared to the heat treatable alloys. Bulk texture measurements within the nugget zone of the optimally processed sample reveal a relatively dominant C component of shear texture. Average grain size in the nugget zone remained the same and the bulk crystallographic texture components were retained during multiple-pass FSP. The lower strain energies involved and the enhanced recovery processes due to the high temperature materials processing of the alloy during FSP resulted in a stable microstructure and texture. In summary, FSP could be promoted as a competent and suitable secondary processing technique for the bulk production of ultra-fine-grained materials in strain hardenable aluminium alloys. KW - Friction stir processing KW - Aluminium alloys KW - Electron back-scattered diffraction KW - Crystallographic texture KW - Dynamic recrystallization PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S1044580317336136 DO - https://doi.org/10.1016/j.matchar.2018.03.044 SN - 1044-5803 SN - 1873-4189 VL - 140 SP - 134 EP - 146 PB - Elsevier B.V CY - Amsterdam, The Netherlands AN - OPUS4-45125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaiser, T. M. A1 - Braune, C. A1 - Kalinka, Gerhard A1 - Schulz-Kornas, E. T1 - Nano-indentation of native phytoliths and dental tissues: implications for herbivore-plant combat and dental wear proxies JF - Evolutionary Systematics N2 - Tooth wear induced by abrasive particles is a key process affecting dental function and life expectancy in mammals. Abrasive particles may be plant endogenous opal phytoliths, exogene wind-blown quartz dust or rain borne mineral particles ingested by mammals. Nano-indentation hardness of abrasive particles and dental tissues is a significant yet not fully established parameter of this tribological system. We provide consistent nano-indentation hardness data for some of the major antagonists in the dental tribosystem (tooth enamel, tooth dentine and opaline phytoliths from silica controlled cultivation). All indentation data were gathered from native tissues under stable and controlled conditions and thus maximize comparability to natural systems. Here we show that native (hydrated) wild boar enamel exceeds any hardness measures known for dry herbivore tooth enamel by at least 3 GPa. The native tooth enamel is not necessarily softer then environmental quartz grit, although there is little overlap. The native hardness of the tooth enamel exceeds that of any silica phytolith hardness recently published. Further, we find that native reed phytoliths equal native suine dentine in hardness, but does not exceed native suine enamel. We also find that native suine enamel is significantly harder than dry enamel and dry phytoliths are harder than native phytoliths. Our data challenge the claim that the culprit of tooth wear may be the food we chew, but suggest instead that wear may relates more to exogenous than endogenous abrasives. KW - Phytolith KW - Indentation hardness KW - Enamel KW - Dentine KW - Tooth wear PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-451417 UR - http://zoobank.org/5C7DBB2B-B27D-4CE6-9656-33C4A0DA0F39 DO - https://doi.org/10.3897/evolsyst.2.22678 VL - 2 SP - 55 EP - 63 PB - PENSOFT CY - USA AN - OPUS4-45141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Gemeinert, Marion A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial classification of powders N2 - The EU recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. Within the European Project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nanomaterial or non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nanomaterial or non-nanomaterial. The correct identification of a nanomaterial by VSSA method (positive test) is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape. For particles containing micro-pores or having a microporous coating, false positive results will be produced. Furthermore, broad particle size distributions – as typically for ceramic materials – as well as multi-modal size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and improve the method. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft mit Symposium Hochleistungskeramik CY - München, Germany DA - 10.04.2018 KW - VSSA KW - Nanoparticles PY - 2018 AN - OPUS4-45097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial identification of powders N2 - The EC’s recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. However, it has been recently demonstrated that the implementation of this definition for regulatory purposes is conditioned by the large deviations between the results obtained by different sizing methods or due to practical reasons such as high costs and time-consuming (SEM, TEM). Within the European project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nano-/non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nano- or non-nanomaterial. The correct identification of a nanomaterial by VSSA method is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape, so that it changes considerably with the number of nano-dimensions of the particles. For particles containing micro-pores or having a microporous coating false positive results will be produced. Furthermore, broad particle size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and to improve this good available and agglomeration tolerant method. T2 - Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - VSSA KW - Nanomaterial screening KW - Nano-powder characterization PY - 2018 AN - OPUS4-45099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts JF - Metallurgical and materials transactions A N2 - The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed. KW - Additive manufacturing KW - SLM KW - Residual stress KW - Synchrotron X-ray diffraction KW - IN718 PY - 2018 DO - https://doi.org/10.1007/s11661-018-4653-9 SN - 1073-5623 VL - 49A IS - 7 SP - 3038 EP - 3046 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elsayed, H. A1 - Zocca, Andrea A1 - Schmidt, J. A1 - Günster, Jens A1 - Colombo, P. A1 - Bernardo, E. T1 - Bioactive glass-ceramic scaffolds by additive manufacturing and sinter-crystallization of fi ne glass powders JF - Journal Materials Research N2 - Wollastonite (CaSiO 3 ) – diopside (CaMgSi 2 O 6 ) glass-ceramic scaffolds have been successfully fabricated using two different additive manufacturing techniques: powder-based 3D printing (3DP) and digital light processing (DLP), coupled with the sinter-crystallization of glass powders with two different compositions. The adopted manufacturing process depended on the balance between viscous flow sintering and crystallization of the glass particles, in turn in fluenced by the powder size and the sensitivity of CaO – MgO – SiO 2 glasses to surface nucleation. 3DP used coarser glass powders and was more appropriate for low temperature firing (800 – 900 °C), leading to samples with limited crystallization. On the contrary, DLP used finer glass powders, leading to highly crystallized glass-ceramic samples. Despite the differences in manufacturing technology and crystallization, all samples featured very good strength-to-density ratios, which bene fit theiruse for bone tissue engineering applications. The bioactivity of 3D-printed glass-ceramics after immersion in simulated body fluid and the similarities, in terms of ionic releases and hydroxyapatite formation with already validated bioactive glass-ceramics, were preliminarily assessed. KW - 3D-Printing KW - Bio Ceramic KW - Additive manufacturing PY - 2018 DO - https://doi.org/10.1557/jmr.2018.120 SN - 2044-5326 SN - 0884-2914 VL - 33 IS - 14 SP - 1960 EP - 1971 PB - Cambridge University Press AN - OPUS4-45718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günster, Jens A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Acchar, W. T1 - 3D printing of porcelain by layerwise slurry deposition JF - Journal of the European Ceramic Society N2 - The Layerwise Slurry Deposition is a technology for the deposition of highly packed powder layers. A powder bed is achieved by depositing and drying layers of a ceramic suspension by means of a doctor blade. This deposition technique was combined with the binder jetting technology to develop a novel Additive Manufacturing technology, named LSD-print. The LSD-print was applied to a porcelain ceramic. It is shown that it was possible to produce parts with high definition, good surface finish and at the same time having physical and mechanical properties close to those of traditionally processed porcelain, e.g. by slip casting. This technology shows high future potential for being integrated alongside traditional production of porce-lain, as it is easily scalable to large areas while maintaining a good definition. Both the Layerwise Slurry Deposition method and the binder jetting technologies are readily scalable to areas as large as > 1 m2. KW - Binder jetting KW - Additive Manufacturing KW - 3D printing KW - Porcelain PY - 2018 DO - https://doi.org/10.1016/j.jeurceramsoc.2018.03.014 SN - 0955-2219 VL - 38 IS - 9 SP - 3395 EP - 3400 PB - Elsevier Ltd. AN - OPUS4-45713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, Jinchun A1 - Zocca, Andrea A1 - Agea Blanco, Boris A1 - Melcher, J. A1 - Sparenberg, M. A1 - Günster, Jens T1 - 3D Printing of Self-Organizing Structural Elements for Advanced Functional Structures JF - Advanced Materials Technologies N2 - A shape evolution approach based on the thermally activated self-organization of 3D printed parts into minimal surface area structures is presented. With this strategy, the present communication opposes currently established additive manufacturing strategies aiming to stipulate each individual volumetric element (voxel) of a part. Instead, a 3D structure is roughly defined in a 3D printing process, with all its advantages, and an externally triggered self-organization allows the formation of structural elements with a definition greatly exceeding the volumetric resolution of the printing process. For enabling the self-organization of printed objects by viscous flow of material, functionally graded structures are printed as rigid frame and melting filler. This approach uniquely combines the freedom in design, provided by 3D printing, with the mathematical formulation of minimal surface structures and the knowledge of the physical potentials governing self-organization, to overcome the paradigm which strictly orrelates the geometrical definition of 3D printed parts to the volumetric resolution of the printing process. Moreover, a transient liquid phase allows local programming of functionalities, such as the alignment of functional particles, by means of electric or magnetic fields. KW - Additive Manufacturing KW - Self-Assembly KW - 3D-Printing KW - Polymeric Materials PY - 2018 DO - https://doi.org/10.1002/admt.201800003 SN - 2365-709X VL - 3 IS - 5 SP - 1800003-1 EP - 1800003-7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-45714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernardino, R. A1 - Wirth, C. A1 - Stares, S.L. A1 - Salmoria, G.V. A1 - Hotza, D. A1 - Günster, Jens T1 - Manufacturing of SiO2-Coated b-TCP Structures by 3D Printing using a Preceramic Polymer as Printing Binder and Silica Source JF - Journal Ceramic Science Technology N2 - Tricalcium phosphate (b-TCP) can be used as bone graft, exhibiting suitable bioabsorption and osteoconduction properties. The presence of silica may induce the formation of a hydroxyapatite layer, enhancing the integration between implant and bone tissue. Preceramic polymers present silicon in their composition, being a source of SiO2 after thermal treatment. Using the versatility of 3D printing, b-TCP and a polysiloxane were combined to manufacture a bulkb-TCP with a silica coating. For the additive manufacturing process, PMMA powder was used as passive binder for the b-TCP particles, and polymethylsilsesquioxane (MK), dissolved in an organic solvent, was used both as a printing binder (ink) and as the source of SiO2 for the coating. Five distinct coating compositions were printed with increasing amounts of MK. The structures were then submitted to heat treatment at 1180 °C for 4 h. XRD and FTIR showed no chemical reaction between the calcium phosphate and silica. SEM allowed observation of a silicon-based ating on the structure surface. Mechanical strength of the sintered porous structures was within the range of that of trabecular bones. KW - Tricalcium Phosphate KW - 3D-Printing KW - Preceramic polymer KW - Bone regeneration PY - 2018 DO - https://doi.org/10.4416/JCST2017-00056 VL - 9 IS - 1 SP - 37 EP - 41 PB - Göller Verlag CY - 76532 Baden-Baden AN - OPUS4-45715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, Alexander A1 - Trappe, Volker A1 - Hickmann, Stefan A1 - Ortwein, H.-P ED - Christ, Hans-Jürgen T1 - Investigation of the infinite life of fibre-reinforced plastics using X-ray refraction topography for the in-situ, nondestructive evaluation of micro-structural degradation processes during cyclic fatigue loading T2 - Fatigue of Materials at Very High Numbers of Loading Cycles N2 - The described investigation of carbon-fibre-reinforced plastics (CFRP) documents that damage evolution can be observed by means of X-ray refractography. Comparative investigations with synchrotron technique on CFRP and grey-scale analysis on glass fibre-reinforced-plastics (GFRP) confirm these results. Moreover it was found that the fracture mechanical properties of the matrix system influence damage nucleation and propagation in the laminate during static and fatigue loads. Single-step fatigue tests were carried out on Laminates with RIM135 and LY556 matrix systems made from non-crimped fabric (NCF) or twill weave in different fibre orientations. The damage to the LY556 laminates was characterized by laminate cracks growing rapidly over the whole specimen width, whereas the damage on the RIM135 laminates was characterized by an earlier onset of micro-cracking followed by laminate cracks. The specimens were fatigued up to 108 (very high cycle fatigue (VHCF) regime) load cycles. S-N-curves of damage initiation were drawn and boundaries were identified for endurance within the VHCF regime. A phenomenology based model focusing on matrix stress was applied to reproduce the first inter-fibre failure (IFF) under static and fatigue loads. KW - Carbon fibre-reinforced-plastics KW - Fatigue KW - Damage evolution KW - X-ray refractography KW - Very high cycle fatigue PY - 2018 SN - 978-3-658-24531-3 DO - https://doi.org/10.1007/978-3-658-24531-3 VL - 2018 SP - 417 EP - 439 PB - Springer Spektrum CY - Wiesbaden ET - 1. Auflage AN - OPUS4-50096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Crack propagation in filled and unfilled polymers: Separation of surface energy and irreversible deformation energy N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. The fracture tests include the conventional tensile test, the macroscopic peel test and the single fiber peel – off test. T2 - PhD Day 2018 of BAM CY - Berlin, Germany DA - 31.05.2018 KW - Crack Propagation KW - Polymer PY - 2018 AN - OPUS4-48471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mieller, Björn ED - Kollenberg, W. T1 - Sintern T2 - Technische Keramik N2 - Unter Sintern versteht man allgemein die Überführung eines aus Pulver geformten Rohlings in ein Formteil mit angestrebter Mikrostruktur bzw. gewünschten Gebrauchseigenschaften durch thermische Prozesse. In diesem Kapitel werden die Grundlagen zu Triebkräften und Kinetik sowie die prinzipiellen Mechanismen für Stofftransport und Verdichtung vorgestellt. Die verschiedenen Sintermechanismen Festphasensintern, Flüssigphasensintern und Reaktionssintern werden erläutert und mit einem Überblick über Drucksinterverfahren ergänzt. Abschließend wird ein Überblick über technologische Einflussfaktoren auf die Sinterung gegeben. KW - Technische Keramik KW - Sintermechanismen PY - 2018 SN - 978-3-8027-2986-7 SN - 978-3-8027-3081-8 SP - Kap. 4.6, 510 EP - 525 PB - Vulkan Verlag GmbH CY - Essen ET - 3 AN - OPUS4-43656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pelegrina, J. L. A1 - Olbricht, Jürgen A1 - Yawny, A. A1 - Eggeler, G. T1 - Temperature-induced transformations and martensitic reorientation processes in ultra-fine-grained Ni rich pseudoelastic NiTi wires studied by electrical resistance JF - Journal of Alloys and Compounds N2 - Temperature-induced, stress-induced martensitic phase transitions and martensite reorientation process in Ni rich (50.9 at.%) NiTi pseudoelastic NiTi wires with ultra-fine grained (UFG) microstructure were studied by electrical resistance measurements. Measurements of the electrical resistance as a function of temperature at different constant mechanical loads accompanied by complementary experiments with variable loads at constant temperature were performed. Results show that the transformation mechanisms in UFG microstructures exhibit a higher level of complexity when compared with those characterizing the behavior of other microstructures (e.g., recrystallized or larger grains size). It was found that a threshold stress level below 150 MPa delimits the transition from a homogeneous (low stress) to localized but reversible Lüders type transformation (high stress) when the transformations are induced under constant applied stress and that reorientation processes require stresses of 100 MPa in the present UFG wires. Even though the strain evolutions do not always show two distinct yielding events during cooling or heating, electrical resistance measurements proved that a two-step transformation involving R-phase and B19' martensite was always present in the extended range of temperatures and stresses investigated here. KW - Shape memory alloys KW - NiTi KW - Martensitic transformation KW - Electrical resistance PY - 2018 DO - https://doi.org/10.1016/j.jallcom.2017.12.009 SN - 0925-8388 VL - 735 SP - 2574 EP - 2583 PB - Elsevier AN - OPUS4-43549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Einfluss der Pulversynthese auf die Eigenschaften thermoelektrischer Oxide N2 - Calciumcobaltit und Calciummanganat gehören zu den vielversprechendsten thermoelektrischen Oxiden im Temperaturbereich zwischen 600 °C und 800 °C an Luft. Mittels thermoelektrischer Generatoren kann ein Temperaturgradient direkt in elektrische Leistung umgewandelt werden. Für die kostengünstige Pulverherstellung von Funktionsmaterialien wird im industriellen Maßstab meist die Festphasenreaktion (bzw. Kalzinierung) verwendet. Da es sich dabei um einen Hochtemperaturprozess handelt, ist diese Kalzinierung sehr energieintensiv. In der Literatur werden sehr unterschiedliche Prozessbedingungen zur Pulversynthese thermoelektrischer Oxide genutzt. Soweit dem Autor bekannt, ist keine systematische Untersuchung des Einflusses der Pulversynthesebedingungen auf die thermoelektrischen Eigenschaften publiziert. Deshalb wurde eine systematische Untersuchung des Einflusses der Pulversynthesebedingungen (Temperatur, Haltezeit, Partikelgröße, Wiederholungen) auf die thermoelektrischen Eigenschaften von Calciumcobaltit und Calciummanganat durchgeführt. Es konnte gezeigt werden, dass sich ein höherer Energieeintrag während der Kalzinierung negativ auf die thermoelektrischen Eigenschaften auswirkt. T2 - Seminar des Lehrstuhls für Funktionsmaterialien CY - Universität Bayreuth, Bayreuth, Germany DA - 12.01.2018 KW - Kalzinierung KW - Thermoelektrika KW - Calciummanganat KW - Calciumcobaltit PY - 2018 AN - OPUS4-43772 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Kromm, Arne A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Götheburg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Ressidual stress KW - Neutron diffraction PY - 2018 AN - OPUS4-45761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - VAMAS - Workshop CY - BAM, Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Neutron diffraction KW - Ressidual stress PY - 2018 AN - OPUS4-45762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Lellinger, D. A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Crack propagation in PE-HD induced by environmental stress cracking (ESC) analyzed by several imaging techniques JF - Polymer Testing N2 - Different imaging techniques were employed to monitor Full Notch Creep Test (FNCT) experiments addressing environmental stress cracking in more detail. The FNCT is a well-established test method to assess slow crack growth and environmental stress cracking of polymer materials, especially polyethylene. The standard test procedure, as specified in ISO 16770, provides a simple comparative measure of the resistance to crack growth of a certain material based on the overall time to failure when loaded with a well-defined mechanical stress and immersed in a liquid medium promoting crack propagation. Destructive techniques which require a direct view on the free fracture surface, such as light microscopy and laser scanning microscopy, are compared to non-destructive techniques, i.e. scanning acoustic microscopy and xray micro computed tomography. All methods allow the determination of an effective crack length. Based on a series of FNCT specimens progressively damaged for varied Durations under standard test conditions, the estimation of crack propagation rates is also enabled. Despite systematic deviations related to the respective Imaging techniques, this nevertheless provides a valuable tool for the detailed evaluation of the FNCT and its further development. KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Full notch creep test (FNCT) KW - X-ray computed tomography (CT) KW - Laser scanning microscopy (LSM) KW - Scanning acoustic microscopy (SAM) PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.08.014 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 544 EP - 555 PB - Elsevier AN - OPUS4-45766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Nolze, Gert A1 - Schriever, Sina A1 - Feldmann, Titus A1 - Farzik Ijaz, M. A1 - Viguier, B. A1 - Poquillon, D. A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. T1 - Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature JF - Metallurgical and materials transactions A N2 - The creep behavior of single crystals of the nickel-based superalloy CMSX-4 was investigated at 1288 °C, which is the temperature of the hot isostatic pressing treatment applied to this superalloy in the industry. It was found that at this super-solvus temperature, where no gammaPrime-strengthening occurs, the superalloy is very soft and rapidly deforms under stresses between 4 and 16 MPa. The creep resistance was found to be very anisotropic, e.g., the creep rate of [001] crystals was about 11 times higher than that of a [111] crystal. The specimens of different orientations also showed a very different necking behavior. The reduction of the cross-sectional area psi of [001] crystals reached nearly 100 pct, while for a [111] crystal psi = 62 pct. The EBSD analysis of deformed specimens showed that despite such a large local strain the [001] crystals did not recrystallize, while a less deformed [111] crystal totally recrystallized within the necking zone. The recrystallization degree was found to be correlated with deformation behavior as well as with dwell time at high temperature. From the analysis of the obtained results (creep anisotropy, stress dependence of the creep rate, traces of shear deformation, and TEM observations), it was concluded that the main strain contribution resulted from <01-1>{111} octahedral slip. T2 - 3rd European Conference on Superalloys (‘Eurosuperalloys 2018’) CY - Oxford, UK DA - 9.9.2018 KW - Single-crystal KW - Superalloy KW - Creep KW - Isostatic hot pressing (HIP) PY - 2018 DO - https://doi.org/10.1007/s11661-018-4729-6 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3973 EP - 3987 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45660 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. A1 - Balzer, R. A1 - Kiefer, P. T1 - The influence of water as volatile on crack propagation in soda-lime silicate glass N2 - The talk was given at the Spring School of the SPP1594 in Hannover and summarizes the actual findings about crack growth in water bearing soda-lime silicate glass and a comparison to other oxide glasses. T2 - Spring School des SPP1594 CY - Hannover, Germany DA - 06.03.2018 KW - DCB KW - Soda-lime silicate glass KW - Crack growth KW - Vickers KW - Water speciation PY - 2018 AN - OPUS4-45699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -