TY - JOUR A1 - Wang, Z. A1 - Wegner, Karl David A1 - Stiegler, L. M. S. A1 - Zhou, X. A1 - Rezvani, A. A1 - Odungat, A. S. A1 - Zubiri, B. A. A1 - Wu, M. A1 - Spiecker, E. A1 - Walter, J. A1 - Resch-Genger, Ute A1 - Segets, D. T1 - Optimizing the Shelling Process of InP/ZnS Quantum Dots Using a Single-Source Shell Precursor: Implications for Lighting and Display Applications N2 - InP/ZnS core/shell quantum dots (QDs), recognized as highly promising heavy-metal-free emitters, are increasingly being utilized in lighting and display applications. Their synthesis in a tubular flow reactor enables production in a highly efficient, scalable, and reproducible manner, particularly when combined with a single-source shell precursor, such as zinc diethyldithiocarbamate (Zn(S2CNEt2)2). However, the photoluminescence quantum yield (PLQY) of QDs synthesized with this route remains significantly lower compared with those synthesized in batch reactors involving multiple steps for the shell growth. Our study identifies the formation of absorbing, yet nonemissive ZnS nanoparticles during the ZnS shell formation process as a main contributing factor to this discrepancy. By varying the shelling conditions, especially the shelling reaction temperature and InP core concentration, we investigated the formation of pure ZnS nanoparticles and their impact on the optical properties, particularly PLQY, of the resultant InP/ZnS QDs through ultraviolet−visible (UV−vis) absorption, steady-state and time-resolved photoluminescence (PL) spectroscopy, scanning transmission electron microscopy (STEM), and analytical ultracentrifugation (AUC) measurements. Our results suggest that process conditions, such as lower shelling temperatures or reduced InP core concentrations (resulting in a lower external surface area), encourage homogeneous nucleation of ZnS. This reduces the availability of shell precursors necessary for effective passivation of the InP core surfaces, ultimately resulting in lower PLQYs. These findings explain the origin of persistently underperforming PLQY of InP/ZnS QDs synthesized from this synthesis route and suggest further optimization strategies to improve their emission for lighting and display applications. KW - Nano KW - Particle KW - Synthesis KW - InP KW - Shell KW - Fluorescence KW - Quantum yield KW - ZnS KW - Semiconductor KW - Quantum dot KW - Flow reactor KW - Method KW - AUC KW - Size KW - Automation KW - Sensor PY - 2024 DO - https://doi.org/10.1021/acsanm.4c05265 SN - 2574-0970 VL - 7 IS - 20 SP - 24262 EP - 24273 PB - ACS Publications AN - OPUS4-61518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rezvani, A. A1 - Wang, Z. A1 - Wegner, Karl David A1 - Soltanmoradi, H. A1 - Kichigin, A. A1 - Zhou, X. A1 - Gantenberg, T. A1 - Schram, J. A1 - Zubiri, B. A. A1 - Spiecker, E. A1 - Walter, J. A1 - Resch-Genger, Ute A1 - Segets, D. T1 - Separation of Indium Phosphide/Zinc Sulfide Core−Shell Quantum Dots from Shelling Byproducts through Multistep Agglomeration N2 - Semiconductor quantum dots (QDs) possess unique electronic and optical properties, making them promising candidates for applications in lightemitting diodes, solar cells, bioimaging, and photocatalysis. Precise control over their size, shape, and chemical and electronic structure is crucial to ensure the desired functional properties and optimize device performance. However, challenges in QD synthesis and post-synthesis modification persist, especially in large-scale production. This study addresses the classification of QDs synthesized in a tubular flow reactor consisting of a mixture of the desired InP/ZnS core−shell QDs and QDs made from the shell material, i.e., here ZnS QDs formed as a byproduct during the formation step of the ZnS shell. The homogeneous nucleation of ZnS nanoparticles from the shelling material introduces a heterogeneity in size and composition and affects the optical properties of the resulting QDs. To address this issue, we developed a size-selective agglomeration (SSA) technique by incrementally introducing ethanol as a poor solvent and classified the synthesized QDs into 13 distinct fractions. These 13 fractions are sorted into three distinct groups: (i) larger InP/ZnS QDs, (ii) a combination of smaller InP/ZnS QDs and larger ZnS QDs, and (iii) predominant ZnS QDs with some very tiny InP/ZnS QDs. The comprehensive characterization of the fractions was conducted using UV−visible absorption spectroscopy, photoluminescence spectroscopy, high-resolution scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, total reflection X-ray fluorescence, and analytical ultracentrifugation. We could demonstrate that our method effectively separated unwanted ZnS QDs from the target InP/ZnS QDs. In addition, the fractions enriched in smaller InP/ZnS QDs exhibited a higher photoluminescence quantum yield compared to the fractions with larger QDs. This demonstrates the efficacy of SSA in finetuning the composition of QD mixtures produced on a larger scale to improve their functional properties. This approach provides fundamental understanding toward the development of a scalable two-dimensional classification process for such ultrasmall nanoparticles by particle size and composition. KW - Quality assurance KW - Reference material KW - Nano KW - Particle KW - Quantum dot KW - Synthesis KW - Flow reactor KW - InP KW - Shell KW - ZnS KW - Surface chemistry KW - Method KW - Fluorescence KW - Quantum yield KW - TEM PY - 2025 DO - https://doi.org/10.1021/acsnano.4c18530 SN - 1936-086X VL - 19 IS - 20 SP - 19080 EP - 19094 PB - ACS Publications AN - OPUS4-63215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David T1 - Luminescent Quantum dots – the next-generation nano light bulbs N2 - Fluorescent semiconductor nanocrystals, also known as quantum dots (QDs), enabled many advancements in biotechnology, photovoltaics, photocatalysis, quantum computing and display devices. The high versatility of this nanomaterial is based on their unique size-tunable photoluminescence properties, which can be adjusted from the visible to the near-infrared range. In contrast to other nanomaterials, QDs made the transition from a laboratory curiosity to the utilization in commercial products, like the QLED television screen or in smartphone displays. The best investigated QDs are composed of heavy metals like cadmium or lead, which is not the best choice in terms of toxicity and environmental pollution. A more promising material is Indium Phosphide (InP), which is also currently used by Samsung, Sony and co. in the QLED displays. In this contribution, I would like to give you a sneak peek behind the curtains of nanomaterial synthesis and show how this material is produced, how to stabilize their structural properties, and assess their toxicity in environmentally relevant conditions. Furthermore, I would like to present a synthesis method to accomplish the last open challenge in display technology of a blue luminescent LED based on QDs by introducing a new element to the InP QDs. T2 - The Berlin Postdoc Day CY - Berlin, Germany DA - 03.11.2022 KW - InP KW - Quantum dots KW - Fluorescence KW - Aging KW - Doping KW - Nanomaterial KW - Cytotoxicity PY - 2022 AN - OPUS4-56194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar T1 - Luminescence lifetime encoding for flow cytometry with quantum-dot-encoded beads N2 - Spectral encoding of cells or particles and the discrimination of multiple spectral codes are a critical process in flow cytometry (FCM). Typical issues in spectral encoding are, e.g., the spectral overlap of codes, or the increasing complexity of instruments . The exploitation of the photoluminescence lifetime (LT) as an encoding parameter could be used to circumvent both of these issues, as it adds another dimension to the parameter space, or, when used as a stand-alone parameter, requiring only one excitation light source and one detector. While LT encoding was considered already decades ago it is still not implemented as a routine technique in FCM yet, mainly due to the challenge of very few photons being available within the limited transition time of a cell or particle through the laser spot. Recently, we demonstrated LT-FCM based on luminophores with ns LTs in a compact and low-cost flow cytometer. Measurements on polymer microbeads containing luminophores with distinctly different excited state LTs enabled the complete discrimination of three LT codes and five codes in total could be identified. Now, we have extended our approach towards considerably longer LTs by custom-made polymer microbeads loaded with different ratios of InP/ZnS and AgInS2 quantum dots. The use of these materials significantly expands the usable time range for LT encoding to up to several hundred ns. Our studies demonstrate the possibility to further increase the number of viable LT codes for multiplexing in LT-FCM without the need for extensive hardware modifications. T2 - Visions in Cytometry - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar T1 - Spectral and Lifetime Encoding of Polymer Particles with Cd-free Ternary Semiconductor Nanocrystals for Flow Cytometry with Time Resolved Fluorescence Detection N2 - Multiplexed encoding schemes of nano- and micrometer sized particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. The fluorescence parameter lifetime has been, however, barely exploited. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the excitation and emission wavelength, thus reducing instrument costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically < 10 ns, the fluorescence LTs of ternary semiconductor QDs that represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This present a time region that can be barely covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed and the encoded particles will be then used for fluorescence assays for the analysis of several targets in parallel. Therefor the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs In one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Bad Honnef Physics School Exciting nanostructures: Characterizing advanced confined systems CY - Bad Honnef, Germany DA - 21.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar T1 - Lifetime Barcoding of Polystyrene Beads with Fluorescent Nanocrystals for Fluorescent Lifetime Detection in Flow Cytometry N2 - Multiplexed encoding schemes of nano- and micrometer sized polymer particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the same excitation and emission wavelength, thus reducing instrumental costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically <10ns, the fluorescence LTs of ternary semiconductor QDs which represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This presents a time region that can barely be covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed, and the encoded particles will then be used for fluorescence assays for the analysis of several targets in parallel. Therefore, the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs in one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -