TY - JOUR A1 - Dabah, Eitan A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kardjilov, N. A1 - Manke, I. A1 - Boin, M. A1 - Woracek, R. A1 - Griesche, Axel T1 - Time-resolved Bragg-edge neutron radiography for observing martensitic phase transformation from austenitized super martensitic steel N2 - Neutron Bragg-edge imaging was applied for the visualization of a γ-Austenite to α'-martensite phase transformation. In the present study, a super martensitic stainless steel sample was heated until complete austenitization and was subsequently cooled down to room temperature. The martensitic phase Transformation started at Ms = 190 °C. Using a monochromatic neutron beam with λ = 0.390 nm, the transmitted intensity was significantly reduced during cooling below Ms, since the emerging martensitic phase has a higher attenuation coefficient than the austenitic phase at this wavelength. The phase Transformation process was visualized by filming the transmission images from a scintillator screen with a CCD camera with a temporal resolution of 30 s and a spatial resolution of 100 µm. KW - Neutron imaging KW - Bragg-edge imaging KW - Phase transformation PY - 2017 U6 - https://doi.org/10.1007/s10853-016-0642-9 SN - 0022-2461 SN - 1573-4803 VL - 52 IS - 6 SP - 3490 EP - 3496 AN - OPUS4-38574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Kardjilov, N. ED - Somerday, B. P. ED - Sofronis, P. T1 - Measurement of hydrogen distributions in metals by neutron radiography and tomography N2 - Neutron imaging has become a valuable tool for measuring hydrogen distributions qualitatively and quantitatively in metals. Hydrogen mass flow can be measured inside cm thick Steel samples with 10 s temporal resolution. Hydrogen accumulations around craclcs in embrittled iron samples can be visualized three-dimensionally. The gas pressure of hydrogen in crack cavities has been measured to be in the ränge of 5 MPa to 15 MPa. This quality of information allows new insights for the analysis of damage mechanisms on a micrometer scale, e.g., of hydrogen blistering. Further, this method is nondestructive and provides local information in situ and in three dimensions with a spatial resolution of 20 µm - 30 µm. T2 - International Hydrogen Conference 2016 CY - Jackson Lake Lodge, Wyoming, USA DA - 11.09.2017 KW - Hydrogen KW - Neutron imaging KW - Neutron radiography KW - Neutron tomography PY - 2017 SN - 978-0-7918-6138-7 U6 - https://doi.org/10.1115/1.861387_ch46 SP - 416 EP - 422 AN - OPUS4-42505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -