TY - JOUR A1 - Zhang, G. A1 - Österle, Werner A1 - Jim, B. A1 - Häusler, Ines A1 - Hesse, Rene A1 - Wetzel, B. T1 - The role of surface topography in the evolving microstructure and functionality of tribofilms of an epoxy-based nanocomposite N2 - The topographic effect of steel counterface, finished by mechanical grinding with Ra ranging from 0.01 to 0.95 µm, on the structure and functionality of the tribofilm of a hybrid nanocomposite, i.e. epoxy matrix filled with monodisperse silica nanoparticles, carbon fibers and graphite, was systematically investigated. The nanostructure of the tribofilm was comprehensively characterized by using combined focused ion beam and transmission electron microscope analyses. It was identified that oxidation of the steel surface, release, compaction and tribosintering of silica nanoparticles and deposition of an epoxy-like degradation product as well as fragmentation of carbon fibers are main mechanisms determining the structure and functionality of the tribofilm. The size of roughness grooves determines the type and size class of wear particles to be trapped at the surface. An optimum groove size leading to a maximum of surface coverage with a nanostructured tribofilm formed mainly from released silica nanoparticles was identified. KW - hybrid nanocomposite KW - tribological performance KW - topographic effect KW - tribofilm KW - nanostructure PY - 2016 U6 - https://doi.org/10.1016/j.wear.2016.06.012 VL - 364-365 SP - 48 EP - 56 PB - Elsevier B.V. AN - OPUS4-37937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burbank, John A1 - Woydt, Mathias T1 - Friction and wear reductions in slip-rolling steel contacts through pre-conditioned chemical tribofilms from bismuth compounds N2 - Downsizing in mechanical systems requires effective lubrication strategies to ensure that increased contact stresses do not cause critical material failure during operation. Additionally, eco-toxicological consideration are becoming increasingly important. In this regard, the goal of this investigation is to transfer the running-in phase into the final step of the mechanical finishing process through the targeted pre-conditioning of novel, high toughness steel bearings without thermo-chemical treatments and compare these to conventional, case-hardened Steels. Pre-conditioning involved implementation of the ecologically sustainable, bismuth-based additives to generate chemically reactive tribofilms on slip-rolling contacts by using a formulation with a high concentration of tribofilm forming additive. Generated tribofilms were analyzed by Raman spectroscopy to elucidate their molecular composition and, ultimately, determine the reaction mechanisms of bismuth-based tribofilm formation. Tribofilm-protected samples were subjected to slip-rolling endurance testing in a factory fill engine oil without pre-conditioning additives to determine the influence of pre-condition tribofilms on friction behavior and wear performance. It was observed that pre-conditioned tribofilms from the bismuth-based additives were able to yield lower coefficients of friction (COF) and profilometric wear coefficients than for Steels without pre-conditioning. Moreover, COF values under mixed/boundary conditions approaching and even less than 0.04 were achieved, thereby rivaling DLC-coated alloy equivalents. KW - tribofilm KW - bismuth KW - carbamate KW - slip-rolling KW - friction KW - wear PY - 2016 U6 - https://doi.org/doi:10.1016/j.wear.2016.04.004 SN - 0043-1648 VL - 360-361 SP - 29 EP - 37 PB - Elsevier B.V. AN - OPUS4-35919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -