TY - JOUR A1 - Erdmann, Maren A1 - Kleinbub, Sherin A1 - Wachtendorf, Volker A1 - Schütter, Jan David A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Koerdt, Andrea T1 - Photo-oxidation of PE-HD affecting polymer/fuel interaction and bacterial attachment N2 - In the present study, a simple approach was used to investigate the effect of UV-exposure on two high density Polyethylene materials (PE-HD), commonly used for storage tanks, on fuel sorption behavior and colonization by microorganisms. The aim was to investigate whether the sorption behavior of the fuels (diesel/biodiesel) and the colonization by microorganisms, frequently occurring in the fuel, is affected and may lead to undesirable or safety-relevant material changes. We showed that the UV-irradiation leads to significant changes of the sorption behavior due to chemi-crystallization and crosslinking. The fuel Sorption is affected by the UV-induced formation of polar carbonyl and hydroxyl groups predominantly occurring at the surface. With respect to microbial colonization behavior for Bacillus subtilis and Pseudomonas aeruginosa, isolated from a contaminated diesel sample, differences of the initial adhesion could be shown depending on the initial type of polyethylene as well as on the degree of UV-induced degradation. KW - High density polyethylene KW - Bacterial attachment KW - UV-irradiation KW - Fuel sorption PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510001 VL - 4 IS - 1 SP - Article number: 18 PB - Nature Partner Journals AN - OPUS4-51000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Kleinbub, Sherin A1 - Böhning, Martin A1 - Niebergall, Ute A1 - Koerdt, Andrea T1 - Initial attachment of bacteria on PE-HD by fluorescence microscopy and colony-forming unit N2 - The first documentation of fuel biodeterioration dates back to the late 19th century. However, extensive studies concerning the microbial fuel contamination started in 1980’s. Polymeric fuel storage tanks containing diesel and biodiesel provide environmental conditions for microbial growth. Several studies demonstrated that bacteria, which were found in contaminated fuel systems, can use fuels as macronutrient; but such bacteria can also cause microbiologically influenced corrosion and fouling. The aim of this study is to investigate the initial attachment behavior of bacteria, isolated from a diesel contamination, on neat and photooxidized high-density polyethylene (PE-HD). Two common PE-HD’s, less- and biodiesel-stabilized, were radiated to UV light representing a tank exposed to sunlight. The effect of photooxidiation on PE-HD’s surface were characterized chemically by Fourier-transform infrared spectroscopy (FTIR). The attached bacteria Pseudomonas aeruginosa and Bacillus subtilis on the polymer surface were evaluated by fluorescence microscopy and colony-forming unit tests (CFU). T2 - MoDeSt2018 CY - Tokio, Japan DA - 02.09.2018 KW - PE-HD KW - Initial attachment KW - UV-irradiation PY - 2018 AN - OPUS4-45893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Wachtendorf, Volker A1 - Böhning, Martin A1 - Niebergall, Ute T1 - PE-HD as a polymeric fuel storage tank material: Photooxidation, fuel sorption and long-term storage N2 - High-density polyethylene (PE-HD) is a commodity thermoplastic polymer which is typically used for packing of dangerous goods. Its good resistance against photooxidation, fuels, chemicals and other environmental factors in addition to low production costs makes PE-HD attractive for fuel storage applications. Typical engine fuels stored in polymer tanks are petrol, diesel and biodiesel that receives increasing attention as proper alternative to fossil fuels. One of the major problems with biodiesel is its susceptibility to oxidize due to its chemical composition of unsaturated fatty acids which also can cause polymer degradation. The aim of this study is to investigate the influence of different environmental factors, UV radiation and commonly stored fuels, on the mechanical, physical and chemical properties of two types of PE-HD polymers (stabilized and non-stabilized). The influence on the mechanical properties was tested by Charpy and tensile tests, chemical and physical properties were evaluated by Fourier-transform infrared spectroscopy (FTIR) and by dynamical mechanical analysis (DMA) tests. Samples were characterized after varying exposure time of UV radiation and after fully and partially immersion in biodiesel. In addition, similar experiments were conducted using diesel for comparison. T2 - MoDeSt2018 CY - Tokio, Japan DA - 02.09.2018 KW - PE-HD KW - Biodiesel KW - UV-irradiation KW - Long-term storage KW - Diesel PY - 2018 AN - OPUS4-45894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Wachtendorf, Volker A1 - Sameith, Janin A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Effect of surface degradation on high-density polyethylene for initial attachment of bacillus and pseudomonas N2 - High-density polyethylene (PE-HD) is a widely applied plastic for fuel storage tank applications. But such tanks, filled with diesel or biodiesel, provide excellent environmental conditions for growth of a broad spectrum of fungi and various bacteria1. This can result in fuel contamination, engine plugging or possible (bio-) degradation2. Our research focusses on the initial attachment phase of Bacillus sp. and Pseudomonas aeruginosa isolated from a „dieselpest“2 on two distinctly PE-HD materials, typical for fuel storage tank applications, pre-damaged thermally and by UV-irradiation. T2 - PDDG CY - Taormina, Sicily, Italy DA - 04.09.2017 KW - PE-HD KW - UV-irradiation KW - Initial attachment KW - Bacteria PY - 2017 AN - OPUS4-41908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -