TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Invited talk (Dr. Jean-Francois Lutz) Institut Charles Sadron CY - Strasbourg, France DA - 26.01.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - H bonds KW - Diaminopyridine KW - Acrylamide PY - 2018 AN - OPUS4-44001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asadujjaman, Asad A1 - Espinosa de Oliveira, T. A1 - Mukherji, D. A1 - Bertin, Annabelle T1 - Polyacrylamide ‘‘revisited’’: UCST-type reversible thermoresponsive properties in aqueous alcoholic solutions N2 - Combining experiments and all-atom molecular dynamics simulations, we study the conformational behavior of polyacrylamide (PAM) in aqueous alcohol mixtures over a wide range of temperatures. This study Shows that even when the microscopic interaction is dictated by hydrogen bonding, unlike its counterparts that present a lower critical solution temperature (LCST), PAM shows a counterintuitive tunable upper critical solution temperature (UCST)-type phase transition in water/alcohol mixtures that was not reported before. The Phase transition temperature was found to be tunable between 4 and 60 1C by the type and concentration of alcohol in the mixture as well as by the solution concentration and molecular weight of the polymer. In addition, molecular dynamics simulations confirmed a UCST-like behaviour of the PAM in aqueous alcoholic solutions. Additionally, it was observed that the PAM is more swollen in pure alcohol solutions than in 80% alcoholic solutions due to y-like behaviour. Additionally, in the globular state, the size of the aggregates was found to increase with increasing solvent hydrophobicity and polymer concentration of the solutions. Above ist Phase transition temperature, PAM might be present as individual polymer chains in the coil state (r10 nm). As PAM is a widespread polymer in many biomedical applications (gel electrophoresis, etc.), this finding could be of high relevance for many more practical applications in high performance pharmaceuticals and/or sensors. KW - Thermoresponsive polymer KW - UCST-type polymer KW - Polyacrylamide KW - Water/alcohol mixtures PY - 2018 U6 - https://doi.org/10.1039/c7sm02424j SN - 1744-6848 SN - 1744-683X VL - 14 IS - 8 SP - 1336 EP - 1343 PB - Royal Society of Chemistry CY - London AN - OPUS4-44002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Deutsche Physikalische Gesellschaft (DPG)-Frühjahrtagung 2018 CY - Berlin, Germany DA - 11.03.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - H bonds KW - Diaminopyridine KW - Acrylamide PY - 2018 AN - OPUS4-44569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from monomers with hydrogen-bonding interactions N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and/or 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Invited Talk (Prof. Christine Papadakis) Technische Universität München - Soft Matter Physics CY - Munich, Germany DA - 03.07.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - H bonds KW - Diaminopyridine KW - Acrylamide PY - 2018 AN - OPUS4-45423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Espinosa de Oliveira, T. A1 - Mukherji, D. T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from monomers with hydrogen-bonding interactions N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media with applications in the field of drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and/or 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - 7. Jahrestreffen der Seniorexperten Chemie CY - Weimar, Germany DA - 02.05.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - Polyacrylamide KW - Water/alcohol mixtures PY - 2018 AN - OPUS4-44845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, A. A1 - Ahmadi, V. T1 - Upper Critical Solution Temperature (UCST)-type Thermoresponsive Polymers from Hydrogen-Bonding Monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications,but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or Ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and/or 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Bordeaux Polymer Conference BPC 2018 CY - Bodeaux, France DA - 28.05.2018 KW - Acrylamide KW - Thermoresponsive polymer KW - UCST-type polymer KW - H-bonds KW - Diaminopyridine PY - 2018 AN - OPUS4-45155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -