TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Optimization of Solid-State-Reactions of Calcium Cobaltite Ca3Co4O9 N2 - Calcium cobaltite is a promising p-type oxide thermoelectric material for high temperature applications due to its high figure of merit between 600 °C and 900 °C in air. The solid-state-reaction is well known for large scale powder synthesis of functional materials. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite powder. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not increase but decrease the Seebeck coefficient and the electrical conductivity. The same correlation was determined for the densification. As a higher energy input leads to a larger grain size and therefore to a reduced sinter activity, it can be concluded that the thermoelectric properties are correlated with the sinter activity of the powder. These results can be used to minimize the energy demand for the powder synthesis of Ca₃Co₄ O₉. T2 - 14th European Conference on Thermoelectrics CY - Lisbon, Portugal DA - 20.09.2016 KW - Thermoelectrics KW - Solid-State-Reaction KW - Calcium cobaltite PY - 2016 AN - OPUS4-37543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Lebedev, O.I. A1 - Giovannelli, F. A1 - Bruno, Giovanni A1 - Delorme, F. T1 - Stability of the low thermal conductivity in Fe2TiO5 ceramics N2 - An increase in the thermal diffusivity of Fe2TiO5 is observed after only three cycles of measurement. X-ray refraction shows an increase in the mean specific surface. A segregation of Ca- and F-rich nanocrystals at grain boundaries is also observed by SEM and STEM-EDX. This emphasizes the importance of precursor purity and the influence of redistribution of impurities on thermoelectric properties. T2 - 10th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - X-ray refraction KW - Fe2TiO5 KW - Thermoelectrics PY - 2018 AN - OPUS4-47267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertural, Christina A1 - Deringer, V. L. A1 - George, Janine T1 - Automation of machine learning driven interatomic potential generation for predicting vibrational properties N2 - Investigating the phononic properties is beneficial for predicting low thermal conductivity thermoelectric materials.1–3 Employing density functional theory4 takes many calculation steps and consumes a lot of computational resources.5,6 Using machine learning driven interatomic potentials (MLIP, e.g., Gaussian approximation potential,8 GAP) opens up a faster route to phonons7 but in most cases, the potentials are specifically tailored for a certain compound. In this work, we automate the generation of such MLIPs in a Python code-based workflow, based on the automation tools atomate29 and pymatgen10 which combines the automatic DFT computations with the automated fitting of GAPs. Automation enables easier testing, benchmarking and validation.11 We aim to provide the workflow-generated potentials for storage in databases. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Interatomic potentials KW - Machine learning KW - Phonons KW - Thermoelectrics PY - 2023 AN - OPUS4-57932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -