TY - JOUR A1 - Bernges, T. A1 - Hanus, R. A1 - Wankmiller, B. A1 - Imasato, K. A1 - Lin, S. A1 - Ghidiu, M. A1 - Gerlitz, M. A1 - Peterlechner, M. A1 - Graham, S. A1 - Hautier, G. A1 - Pei, Y. A1 - Hansen, M. R. A1 - Wilde, G. A1 - Snyder, G. J. A1 - George, Janine A1 - Agne, M T. A1 - Zeier, W. G. T1 - Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity N2 - Next-generation thermal management requires the development of low lattice thermal conductivity materials, as observed in ionic conductors. For example, thermoelectric efficiency is increased when thermal conductivity is decreased. Detrimentally, high ionic conductivity leads to thermoelectric device degradation. Battery safety and design also require an understanding of thermal transport in ionic conductors. Ion mobility, structural complexity, and anharmonicity have been used to explain the thermal transport properties of ionic conductors. However, thermal and ionic transport are rarely discussed in direct comparison. Herein, the ionic conductivity of Ag+ argyrodites is found to change by orders of magnitude without altering the thermal conductivity. Thermal conductivity measurements and two-channel lattice dynamics modeling reveal that the majority of Ag+ vibrations have a non-propagating diffuson-like character, similar to amorphous materials. It is found that high ionic mobility is not a requirement for diffuson-mediated transport. Instead, the same bonding and structural traits that can lead to fast ionic conduction also lead to diffuson-mediated transport. Bridging the fields of solid-state ionics and thermal transport, it is proposed that a vibrational perspective can lead to new design strategies for functional ionic conducting materials. As a first step, the authors relate the so-called Meyer-Neldel behavior in ionic conductors to phonon occupations. KW - Diffusons KW - DFT KW - Phonons KW - Thermoelectrics PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547140 SN - 1614-6832 VL - 12 IS - 22 SP - 1 EP - 13 PB - Wiley VHC-Verlag AN - OPUS4-54714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Stargardt, Patrick A1 - Töpfer, Jörg A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Development of textured multilayer thermoelectric generators based on calcium cobaltite N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. T2 - Virtual Conference on Thermoelectrics 2021 (VCT) CY - Online meeting DA - 20.07.2021 KW - Thermoelectrics KW - Multilayertechnik KW - Screen printing PY - 2021 AN - OPUS4-52993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Stargardt, Patrick A1 - Töpfer, Jörg A1 - Moos, Ralf A1 - Mieller, Björn T1 - Thermoelectric multilayer generators: development from oxide powder to demonstrator N2 - Thermoelectric generators can be used for energy harvesting by directly transforming a temperature gradient into a voltage. Multilayer generators based on ceramic multilayer technology are an interesting alternative to conventional π-type generators. They exhibit several advantages like high filling factor, possibility of texturing, co-firing of all materials in one single-step, and reduction of production costs due to the high possible degree of automation. But, co-firing of promising oxide thermoelectric materials, Ca3Co4O9 (p-type) and CaMnO3 (n-type), is very challenging due to the large difference in sintering temperature (300 K). In this work we show the material development of Ca3Co4O9, CaMnO3, and insulation for multilayer generators co-fired under uniaxial pressure at 900 °C. The materials are tailored regarding their sintering behavior, electrical performance and coefficients of thermal expansion. Tape-casting and pressure assisted sintering are applied to fabricate textured Ca3Co4O9. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10 and the power factor by the factor of 20. The combination of sintering additives and uniaxial pressure is used to decrease the sintering temperature of CaMnO3 to 900 °C while maintaining acceptable thermoelectric properties. Different generator designs (unileg and pn-type) were fabricated and analyzed regarding microstructure and thermoelectric performance. A lower level of complexity is beneficial for co-firing and performance. The unileg demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Thermoelectrics KW - Multilayer technology KW - Co-firing KW - Texture PY - 2022 AN - OPUS4-55357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Optimization of Solid-State-Reactions of Calcium Cobaltite Ca3Co4O9 N2 - Calcium cobaltite is a promising p-type oxide thermoelectric material for high temperature applications due to its high figure of merit between 600 °C and 900 °C in air. The solid-state-reaction is well known for large scale powder synthesis of functional materials. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite powder. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not increase but decrease the Seebeck coefficient and the electrical conductivity. The same correlation was determined for the densification. As a higher energy input leads to a larger grain size and therefore to a reduced sinter activity, it can be concluded that the thermoelectric properties are correlated with the sinter activity of the powder. These results can be used to minimize the energy demand for the powder synthesis of Ca₃Co₄ O₉. T2 - 14th European Conference on Thermoelectrics CY - Lisbon, Portugal DA - 20.09.2016 KW - Thermoelectrics KW - Solid-State-Reaction KW - Calcium cobaltite PY - 2016 AN - OPUS4-37543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Entwicklung oxidkeramischer Werkstoffe und Folien für thermoelektrische Multilayergeneratoren N2 - Calcium cobaltite is a promising oxide thermoelectric materials for applications between 600 °C and 900 °C in air to convert waste heat directly into electrical power. The solid-state reaction, well known for large scale powder synthesis of functional materials, is used for the production of thermoelectric oxides. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite. To the author’s knowledge, a systematic study of the synthesis conditions of calcium cobaltite and calcium manganate has not yet been published. Therefore, the synthesis conditions for calcium cobaltite (temperature, dwell time, and particle size of raw materials) were studied with a statistical design of experiments (2³) and investigated regarding phase composition (XRD), densification, and thermoelectric properties. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not improve but deteriorate the thermoelectric properties of calcium cobaltite. The same correlation was determined for the shrinkage. As a higher energy input during powder synthesis leads to a larger grain size and therefore to a reduced sinter activity the shrinkage at a given sinter profile is minimize as well as the thermoelectric properties. These results can be used to minimize the energy demand for the powder synthesis of oxide thermoelectric materials. In addition an increase of power factor by factor 10 can be achieved by applying pressure assisted sintering. T2 - Funktionsmaterialien - Lehrstuhlseminar CY - Bayreuth, Germany DA - 18.11.2016 KW - Thermoelectrics KW - Solid-state-reaction KW - Calcium cobaltite PY - 2016 AN - OPUS4-38375 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Selleng, Christian A1 - Stöcker, T. A1 - Moos, R. A1 - Rabe, Torsten T1 - Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9 N2 - Calcium cobaltite is one of the most promising oxide p-type thermoelectric materials. The solid-state reaction (or calcination, respectively), which is well known for large-scale powder synthesis of functional materials, can also be used for the synthesis of thermoelectric oxides. There are various calcination routines in literature for Ca3Co4O9 powder synthesis, but no systematic study has been done on the influence of calcination procedure on thermoelectric properties. Therefore, the influence of calcination conditions on the Seebeck coefficient and the electrical conductivity was studied by modifying calcination temperature, dwell time, particle size of raw materials and number of calcination cycles. This study shows that elevated temperatures, longer dwell times, or repeated calcinations during powder synthesis do not improve but deteriorate the thermoelectric properties of calcium cobaltite. Diffusion during calcination leads to idiomorphic grain growth, which lowers the driving force for sintering of the calcined powder. A lower driving force for sintering reduces the densification. The electrical conductivity increases linearly with densification. The calcination procedure barely influences the Seebeck coefficient. The calcination procedure has no influence on the phase formation of the sintered specimens. KW - Thermoelectrics KW - Calcination KW - Calcium Cobaltite KW - Solid-State-Synthesis KW - Reaction-sintering PY - 2018 U6 - https://doi.org/10.1007/s10832-018-0124-3 SN - 1385-3449 SN - 1573-8663 VL - 40 IS - 3 SP - 225 EP - 234 PB - Springer AN - OPUS4-44336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Cong A1 - Giovannelli, F. A1 - Chartier, T. A1 - Delorme, F. T1 - Thermoelectric properties of doubly substituted La0.95Sr0.05Co1-xCrxO3 (0 ≤ x ≤ 0.5) ceramics N2 - Dense La0.95Sr0.05Co1-xCrxO3 (0 ≤ x ≤ 0.5) ceramics were synthesized by solid-state reaction and conventional sintering. Room-temperature crystal structure and microstructure were investigated and the thermoelectric properties were measured in the temperature range 323 K – 1020 K. All compositions are single phase with rhombohedral structure, and the lattice parameter of La0.95Sr0.05Co1-xCrxO3 increases with increasing Cr content. La0.95Sr0.05Co1-xCrxO3 is a p-type small polaron conductor. The charge carrier concentration is determined by both substitution of La3+ with Sr2+ and thermally-activated charge disproportionation of Co3+ and / or Cr3+. Above 550 K, the substitution of Co with Cr increases the Seebeck coefficient and reduces the electrical conductivity. Below 550 K, the trend of Seebeck coefficient with Cr content is not clear due to the thermally activated charge disproportionation. At low temperature, the electrical conductivity shows a minimum with Cr content of x = 0.4, as a result of trapped polarons in the Cr sites. By substituting Co with Cr, the power factor below 800 K is reduced and that above 800 K is improved. The thermal conductivity is effectively reduced by doping Cr. The highest ZT value of 0.053 at 373 K is achieved for x = 0, but it decreases rapidly with increasing temperature. Substitution of Co with Cr can effectively improve the ZT values at high temperatures. In the temperature range 700 K – 1000 K, ZT increases with increasing Cr content, the highest being 0.04 at 1000 K for the composition with x = 0.5, more than 4 times the value of the La0.95Sr0.05CoO3 compound. T2 - International / European Conference on Thermoelectrics CY - Caen, France DA - 02.07.2018 KW - Double substitution KW - Thermoelectrics KW - P-type KW - Perovskite PY - 2018 AN - OPUS4-45396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Niedrigsinterndes CaMnO3 für thermoelektrische Anwendungen N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. N2 - Thermoelektrische Materialien können durch die Nutzung des Seebeckeffektes einen Temperaturunterschied direkt in eine Spannung umwandeln. Calciumcobaltit (p-typ) und Calciummanagant (n-typ) sind 2 der vielversprechendsten oxidischen thermoelektrischen Materialien. Für die Entwicklung von kostengünstigen Multilayergeneratoren ist das Co-sintern dieser beiden Materialien notwendig und deshalb eine Anpassung der Sintertemperatur nötig. Calciummangant wird herkömmlicherweise zwischen 1200°C und 1350°C gesintert. Calciumcobaltit erfährt einen ungewünschte Phasenumwandlung bei 926°C, es kann allerding bei 900°C unter 7.5MPa zu 95% dicht gesintert werden. Demzufolge, ist eine Co-sintertemperatur von 900°C anzustreben. Aus diesem Grund wurden mehrere Strategien zur Absenkung der Sintertemperatur von Calciummanaganat untersucht. Zum einen die Zugabe niedrigschmelzender Additive, zum anderen die Zugabe von Additiven, die eine eutektische Schmelze bilden. Es konnte gezeigt werden, dass für Calciummanganat die Verwendung von eutektischen Schmelzen besser geeignet ist als die Verwendung von niedrigschmelzenden Additiven um die Sintertemperatur zu senken.“ T2 - Seminar des Lehrstuhls für Funktionsmaterialien CY - Universität Bayreuth, Bayreuth, Germany DA - 22.06.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-45281 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, R. A1 - Rabe, Torsten T1 - Lowering the sintering temperature of calcium manganate CaMnO3 for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. T2 - 93. DKG-Jahrestagung und Symposium Hochleistungskeramik 2018 CY - Munich, Germany DA - 10.04.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-44818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Reaction sintering and sintering additives for cost-effective production of thermoelectric oxides N2 - Thermoelectric oxides attract much interest recently. Although their thermoelectric properties are inferior to non-oxides, they exhibit distinct advantages. Thermoelectric oxides are stable in air at higher temperatures, their raw materials are less toxic, and more abundant. To enhance attractivity of these materials for industrial applications, production costs need to be reduced. Conventionally, the legs of thermoelectric generators are sintered from green bodies of previously synthesized powder. Reaction-sintering is a fabrication method without a powder synthesis step, as the final phase is formed during the sintering from a raw material mixture. Moreover, the reduction of chemical potential during reaction-sintering is effective as an additional driving force for sintering. We show that reaction-sintering increases the densification of CaMnO3 (n-type, Sm doped). Consequently, the electrical conductivities improved by about 100 % leading to superior power factors (PF = 230 µW/mK² for CaMnO3). Another approach to reduce the production costs is to lower the sintering temperature by adding sinter additives. The addition of 4 wt% CuO to CaMnO3 lowers the sinter temperature from 1250 °C to 1050 °C. The achieved power factor PF = 264 µW/mK is more than two times higher as reported in literature for the same dopant. T2 - Virtual Conference on Thermoelectrics (VCT) CY - Online meeting DA - 21.07.2020 KW - Thermoelectrics KW - Reaction sintering KW - Sintering additives KW - Calcium manganate KW - Calcium cobaltite PY - 2020 AN - OPUS4-51070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Improved thermoelectric properties of CaMnO3 and Ca3Co4O9 by increasing the driving force for sintering N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (Ca3Co4O9, p-type) and calcium manganate (CaMnO3, n-type) are two of the most promising oxide thermoelectric materials. The performance of these materials is evaluated by the power factor PF = S²∙σ and the figure of merit ZT = (PF ∙ T) / κ, demanding high Seebeck coefficient S, high electrical conductivity σ and low thermal conductivity κ. The latter two are increasing with increasing relative sinter density. According to theory, the relative density of ceramics can be improved by increasing the driving force for sintering. This study investigates different approaches to increase the driving force for sintering of Ca3Co4O9 and CaMnO3 to improve densities and thermoelectric properties. The following approaches were applied: minimizing the energy input during powder synthesis by calcination, fine milling of the powder, using reaction-sintering without a powder synthesis step, and adding a transient liquid phase by sinter additives. All different approaches led to an increased densification and thus higher electrical conductivity and higher PF. Thermal conductivity increased as well but not to the same extent. E.g. reaction-sintering increased the densification of Ca3Co4O9 (p-type) and CaMnO3 (n-type). Consequently, the electrical conductivities improved by about 100 % for both oxides leading to superior power factors (PF = 230 µW/mK² for CaMnO3). Although the thermal conductivity increased as well by 8 %, the figures of merit (ZT) were significantly higher compared to conventionally sintered bars. The addition of 4 wt% CuO as a sinter additive to CaMnO3 lowers the sinter temperature from above 1250 °C to below 1100 °C and increases the relative density. Due to the increased density, both electrical conductivity and PF increased by more than 200 % even though the sintering temperature was 150 K lower. T2 - Electroceramics XVII CY - Online meeting DA - 24.08.2020 KW - Thermoelectrics KW - Reaction sintering KW - Sintering additives PY - 2020 AN - OPUS4-51163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Stargardt, Patrick A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Material development for oxide multilayer generators N2 - Thermoelectric generators can be used for energy harvesting by directly transforming a temperature gradient into a voltage. Multilayer generators based on low-temperature co-fired ceramics technology (LTCC) are an interesting alternative to conventional π-type generators. They exhibit several advantages like high filling factor, possibility of texturing, co-firing of all materials in one single-step, and reduction of production costs due to the high possible degree of automation. Pressure-assisted sintering enables the theoretical possibility of co-firing two promising oxide thermoelectric materials: Ca3Co4O9 (p-type) and CaMnO3 (n-type). Due to the large difference in sintering temperature (300 K) the process is very challenging. In this work we show the material development of Ca3Co4O9, CaMnO3, insulation and metallization for multilayer generators co-fired under pressure at 900 °C. The materials are tailored regarding their sintering behavior, electrical performance and coefficients of thermal expansion. Different generator designs (unileg and pn-type) were fabricated and analyzed regarding crack formation, interaction layers and thermoelectric performance. Simulated stresses during cooling in the multilayers are compared with actual crack formation for different sintering conditions. This study shows that a lower pressure level and a lower level of complexity are beneficial for co-firing and performance. T2 - 45th International Conference and Expo on Advanced Ceramics and Composites (ICACC 2021 Virtual) CY - Online meeting DA - 08.02.2021 KW - Thermoelectrics KW - Multilayer PY - 2021 AN - OPUS4-52462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Reimann, T. A1 - Moos, R. A1 - Rabe, Torsten T1 - Texturing of calcium cobaltite for thermoelectric applications by pressure assisted sintering N2 - Thermoelectric materials can convert waste heat directly into electrical power by using the Seebeck effect. Calcium cobaltite (CCO) is considered as a promising thermoelectric p-type oxide for energy harvesting applications at temperatures above 500 °C. The properties and morphology of single-crystal CCO are strongly anisotropic because of its crystal structure of alternating layers of CoO2 and Ca2CoO3. By aligning the plate-like grains, the anisotropic properties of the grains can be assigned to the poly-crystalline parts. In this study, the combination of tape casting and pressure-assisted sintering is used to texture and densify large scale components (50 cm²). Thereby, the influence of powder preparation and applied pressure during sintering on texturing and thermoelectric properties is investigated. The analysis of XRD pole figures revealed that tape casting already leads to highly textured CCO. By pressure variation during sintering, the microstructure of CCO can be tailored either toward maximum power factor as required for energy harvesting or toward maximum figure of merit as required for energy recovery. Low pressure lead to a porous microstructure and maximum figure of merit and higher pressure to full densification and maximum power factor. The electrical and thermal conductivity of CCO seem depending on both texture and sinter density. T2 - KERAMIK 2021 / CERAMICS 2021 CY - Online meeting DA - 19.04.2021 KW - Thermoelectrics KW - Hot pressing KW - Pole figures PY - 2021 AN - OPUS4-52490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Influence of solid-state-synthesis conditions on properties of oxide thermoelectric materials N2 - Calcium cobaltite and calcium manganate are promising oxide thermoelectric materials for applications between 600 °C and 900 °C in air to convert waste heat directly into electrical power. The solid state reaction, well known for large scale powder synthesis of functional materials, is used for the production of thermoelectric oxides. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite and calcium manganate powder. To the author’s knowledge, a systematic study of the synthesis conditions of calcium cobaltite and calcium manganate has not yet been published. Therefore, the synthesis conditions for calcium cobaltite (temperature, dwell time, and particle size of raw materials) were studied with a statistical design of experiments (2³) and investigated regarding phase composition (XRD), densification and thermoelectric properties. The gained knowledge was used to optimize the solid state reaction of calcium manganate. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not improve but deteriorate the thermoelectric properties of calcium cobaltite. The same correlation was determined for the densification. As a higher energy input during powder synthesis leads to a larger grain size and therefore to a reduced sinter activity the densification at a given sinter profile is minimize as well as the thermoelectric properties. These results can be used to minimize the energy demand for the powder synthesis of oxide thermoelectric materials. T2 - 92. DKG Jahrestagung & Symposium Hochleistungskeramik 2017 CY - Berlin, Germany DA - 19.03.2017 KW - Thermoelectrics KW - Solid-state-reaction KW - Calcium cobaltite KW - Calcium maganate PY - 2017 AN - OPUS4-39520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Druckunterstützte Sinterung von Calciumcobaltitfolien N2 - Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and the morphology of Ca3Co4O9 are strongly anisotropic because of its layered crystal structure. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Hot-pressing of tablets is a well-known technology for grain alignment of Ca3Co4O9 and increases the thermoelectric properties in a/b-direction remarkably [1-3]. However, hot-pressing of tablets is limited by the tablet size. An interesting alternative for larger components is the pressure assisted sintering of panels from tape casted layers. Tape casting already leads to grain orientation during green body forming. By combining tape casting and pressure assisted sintering (50 kN maximum force) of Ca3Co4O9, high densities and high thermoelectric properties can be reached for large components up to 200 mm edge length. The morphology of Ca3Co4O9-grains can be designed by doping as well as by varying the powder synthesis conditions. For example Bi-doping increases the anisotropy of the grains, and reaction sintering of uncalcined powder leads to a fine grained microstructure and increases the electrical conductivity for pressure-less sintered specimens. Doped and undoped Ca3Co4O9 powders were successfully tape cast with the doctor blade technique. Several layers of tape were stacked and laminated to 7 cm x 7 cm panels. These panels were sintered in a LTCC sintering press with combined in-situ shrinkage measurement. Pressure-less sintered panels from undoped powder have a 2.5 times higher electrical conductivity at room temperature than dry-pressed test bars with randomly orientated particles. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity (σ25°C=15000 S/m) increases by the factor of 6 compared to the pressure-less sintered panels, which is in good accordance to the values reported in literature for conventional hot pressing [1, 3]. It is not possible to assign the increased anisotropy of Ca2.7Bi0.3Co4O9 to the pressure-assisted sintered panels, as Bi leads to an abnormal grain growth (up to 500 µm) with randomly oriented grains. This decreases the electrical conductivity (σ25°C=5000 S/m). Such an abnormal grain-growth is reported for Bi over-doped Ca3Co4O9 [4] but not because of hot-pressing. N2 - Calciumcobaltit ist eines der vielversprechendsten thermoelektrischen Oxide, welche zur direkten Wärmerückgewinnung genutzt werden können. Calciumcobaltit weist sowohl eine anisotrope Partikelform als auch anisotrope thermoelektrische Eigenschaften auf. Durch gezielte Ausrichtung der Partikel mittels Foliengießens und druckunterstützter Sinterung kann diese Anisotropie gezielt auf ein Bauteil übertragen werden. Die Partikelmorphologie kann durch Dotierung und Kalzinierung beeinflusst werden. Verschiedene Calciumcobaltitpulver wurden druckgesintert und das Gefüge sowie die thermoelektrischen Eigenschaften untersucht. Die Dotierung mit Bismut führte zu einer Verschlechterung der elektrischen Leitfähigkeit bei druckgesinterten Proben im Gegensatz zu undotierten Pulvern. T2 - Funktionsmaterialien - Lehrstuhlseminar CY - Bayreuth, Germany DA - 02.06.2017 KW - Thermoelectrics KW - Calcium cobaltite KW - Pressure assisted sintering KW - Druckunterstützte Sinterung KW - Calciumcobaltit KW - Thermoelektrika PY - 2017 AN - OPUS4-40467 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Bousnina, M. A1 - Giovannelli, F. A1 - Delorme, F. T1 - Influence of Bi on the thermoelectric properties of SrTiO3-δ N2 - The thermoelectric properties of Sr1-xBixTiO3-δ (0 ≤ x ≤ 0.07) have been investigated. Dense ceramics of Sr1-xBixTiO3-δ and Sr0.95TiO3-δ have been prepared by solid-state reaction and conventional sintering in air followed by annealing in a reducing atmosphere. XRD and SEM analyses show that the rutile TiO2 in Sr0.95TiO3 formed after sintering becomes Magnéli phase of TinO2n-1 after annealing. Moreover, Bi resolves from Sr1-xBixTiO3 after annealing, resulting in the formation of Sr1-xBixTiO3-δ/Bi/TinO2n-1 composites. With increasing Bi content in Sr1-xBixTiO3-δ, the electrical conductivity increases while the absolute values of the Seebeck coefficient decrease as a result of increasing carrier concentration. The thermal conductivity of SrTiO3-δ is reduced by doping Bi up to x = 0.07. Highest ZT ~ 0.13 is obtained in Sr0.93Bi0.07TiO3-δ at 1000 K. KW - Thermoelectrics KW - SrTiO3 KW - Composite KW - Magnéli phase PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-472920 SN - 2352-8478 VL - 5 IS - 1 SP - 88 EP - 93 PB - Elsevier AN - OPUS4-47292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Lebedev, O.I. A1 - Giovannelli, F. A1 - Bruno, Giovanni A1 - Delorme, F. T1 - Stability of the low thermal conductivity in Fe2TiO5 ceramics N2 - An increase in the thermal diffusivity of Fe2TiO5 is observed after only three cycles of measurement. X-ray refraction shows an increase in the mean specific surface. A segregation of Ca- and F-rich nanocrystals at grain boundaries is also observed by SEM and STEM-EDX. This emphasizes the importance of precursor purity and the influence of redistribution of impurities on thermoelectric properties. T2 - 10th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - X-ray refraction KW - Fe2TiO5 KW - Thermoelectrics PY - 2018 AN - OPUS4-47267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Lebedev, O. A1 - Giovannelli, F. A1 - Bruno, Giovanni A1 - Delorme, F. T1 - Effects of impurities on the stability of the low thermal conductivity in Fe2TiO5 ceramics N2 - The stability of the low thermal conductivity in Fe2TiO5 pseudobrookite ceramics has been studied. An increase in thermal diffusivity is observed after only three cycles of measurement. X-ray refraction shows an increase in the mean value of specific surface after the thermal diffusivity measurements. By using scanning electron microscopy and high‐angle annular dark‐field scanning transmission electron microscope equipped with energy dispersive X-ray spectroscopy, we observe a segregation of Ca- and F-rich nanocrystals at grain boundaries after three cycles of thermal diffusivity measurement. Therefore, impurities seem to be more efficient to scatter phonons as point defects in the pseudobrookite lattice rather than as nanocrystals at pseudobrookite grain boundaries. This emphasizes the importance of precursor purity and the influence of redistribution of impurities on thermoelectric properties: stability of micro-/nano-structures is a key point, and repeated thermoelectric measurements may allow detecting such metastable micro- /nano-structures and producing stable and reliable data. KW - Fe2TiO5 KW - Impurity segregation KW - Thermoelectrics KW - X-ray refraction KW - Scanning transmission electron microscopy PY - 2019 UR - http://www.sciencedirect.com/science/article/pii/S1044580318329309 U6 - https://doi.org/10.1016/j.matchar.2019.01.021 SN - 1044-5803 SN - 1873-4189 VL - 149 SP - 111 EP - 117 PB - Elsevier Inc. AN - OPUS4-47255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Pressure-assisted sintering of tape cast calcium cobaltite Ca3Co4O9 with varied powder compositions N2 - Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and the morphology of Ca3Co4O9 are strongly anisotropic because of its layered crystal structure. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Hot-pressing of tablets is a well-known technology for grain alignment of Ca3Co4O9 and increases the thermoelectric properties in a/b-direction remarkably. However, hot-pressing of tablets is limited by the tablet size. An interesting alternative for larger components is the pressure assisted sintering of panels from tape casted layers. Tape casting already leads to grain orientation during green body forming. By combining tape casting and pressure assisted sintering (50 kN maximum force) of Ca3Co4O9, high densities and high thermoelectric properties can be reached for large components up to 200 mm edge length. The morphology of Ca3Co4O9-grains can be designed by doping as well as by varying the powder synthesis conditions. For example Bi-doping increases the anisotropy of the grains, and reaction sintering of uncalcined powder leads to a fine grained microstructure and increases the electrical conductivity for pressure-less sintered specimens. Doped and undoped Ca3Co4O9 powders were successfully tape cast with the doctor blade technique. Several layers of tape were stacked and laminated to 7 cm x 7 cm panels. These panels were sintered in a LTCC sintering press with combined in-situ shrinkage measurement. Pressure-less sintered panels from undoped powder have a 2.5 times higher electrical conductivity at room temperature than dry-pressed test bars with randomly orientated particles. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity (σ25°C = 15000 S/m) increases by the factor of 6 compared to the pressure-less sintered panels, which is in good accordance to the values reported in literature for conventional hot pressing [1, 3]. It is not possible to assign the increased anisotropy of Ca2.7Bi0.3Co4O9 to the pressure-assisted sintered panels, as Bi leads to an abnormal grain growth (up to 500 µm) with randomly oriented grains. This decreases the electrical conductivity (σ25°C = 5000 S/m). Such an abnormal grain-growth is reported for Bi over-doped Ca3Co4O9 but not because of hot-pressing. T2 - European Conference on Thermoelectrics (ECT) 2017 CY - Padua, Italy DA - 25.09.2017 KW - Thermoelectrics KW - Pressure assisted sintering KW - Grain growth PY - 2017 AN - OPUS4-42283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Delorme, F. A1 - Schoenstein, F. A1 - Zaghrioui, M. A1 - Flahaut, D. A1 - Allouche, J. A1 - Giovannelli, F. T1 - Synthesis, sintering, and thermoelectric properties of Co1-xMxO (M = Na, 0 ≤ x ≤ 0.07; M = Ag, 0 ≤ x ≤ 0.05) N2 - The structural and thermoelectric properties of Na- and Ag-substituted CoO dense ceramics have been investigated. X-ray diffraction shows that pure phase and Ag/CoO composites have been obtained for Na-doped and Ag-doped CoO, respectively. Raman spectroscopy shows an effect of Na dopants on the lattice disorder of CoO. The chemical composition, element distribution, and valence states of the samples have been characterized by Auger electron microscopy and X-ray photoelectron spectroscopy. Substitution of Co by 5 at. % Na enhances the power factor to 250 μWm−1 K-2 at 1000 K, similar to that of Ca3Co4O9. The corresponding thermal conductivity is also reduced to 3.55 W.m−1 K−1 at 1000 K. Consequently, Co0.95Na0.05O exhibits the best thermoelectric figure of merit (ZT), which is 0.07 at 1000 K. On the other hand, the substitution of Ag into CoO leads to the formation of CoO/Ag composites and deteriorates ZT values. KW - Thermoelectrics KW - CoO KW - Substitution KW - Spark plasma sintering KW - XPS PY - 2019 U6 - https://doi.org/10.1016/j.jeurceramsoc.2018.10.013 SN - 0955-2219 SN - 1873-619X VL - 39 IS - 2–3 SP - 346 EP - 351 PB - Elsevier Ltd. AN - OPUS4-46453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Pressure assisted sintering of tape cast calcium cobaltite N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and morphology of Ca3Co4O9 are strongly anisotropic because of its crystal structure of alternating layers of CoO2 and Ca2CoO3. The electrical conductivity is for example 13.5 times higher in a/b-direction than in c-direction. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Hot-pressing of tablets is a well-known technology for grain alignment of Ca3Co4O9 and increases the thermoelectric properties in a/b-direction remarkably. It also increases the relative density. However, hot-pressing of tablets is limited by the tablet size. An interesting alternative for larger components is the pressure assisted sintering of panels from tape casted layers. Tape casting already leads to a grain alignment during green body forming. By combining tape casting and pressure assisted sintering (50 kN maximum force) of Ca3Co4O9, high densities and high thermoelectric properties can be reached for large components up to 200 mm edge length. Ca3Co4O9 was successfully tape casted with the doctor blade technique (binder: polyvinyl butyral, organic solvent). Several layers of tape were stacked and laminated to 5 cm x 5 cm panels. These panels were sintered with different applied pressures in a LTCC sintering press with combined in-situ shrinkage measurement. Pressure-less sintered panels have a 2.5 times higher electrical conductivity at room temperature than test bars with randomly orientated particles. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity increases by the factor of 6 compared to the pressure-less sintered panels. About 40 % linear shrinkage are reached in pressing direction. The Seebeck coefficient (S25 °C=146 μV/K) and the electrical conductivity (σ25 °C=15100 S/m) are in good agreement with the values published in literature for hot-pressed tablets. T2 - 15th Conference & Exhibition of the European Ceramic Society CY - Budapest, Hungary DA - 09.07.2017 KW - Thermoelectrics KW - Pressure assisted sintering PY - 2017 AN - OPUS4-41026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertural, Christina A1 - Deringer, V. L. A1 - George, Janine T1 - Automation of machine learning driven interatomic potential generation for predicting vibrational properties N2 - Investigating the phononic properties is beneficial for predicting low thermal conductivity thermoelectric materials.1–3 Employing density functional theory4 takes many calculation steps and consumes a lot of computational resources.5,6 Using machine learning driven interatomic potentials (MLIP, e.g., Gaussian approximation potential,8 GAP) opens up a faster route to phonons7 but in most cases, the potentials are specifically tailored for a certain compound. In this work, we automate the generation of such MLIPs in a Python code-based workflow, based on the automation tools atomate29 and pymatgen10 which combines the automatic DFT computations with the automated fitting of GAPs. Automation enables easier testing, benchmarking and validation.11 We aim to provide the workflow-generated potentials for storage in databases. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Interatomic potentials KW - Machine learning KW - Phonons KW - Thermoelectrics PY - 2023 AN - OPUS4-57932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertural, Christina A1 - Deringer, V. A1 - George, Janine T1 - Automation of machine learning driven interatomic potential generation for predicting vibrational properties N2 - Knowing phonon properties is beneficial for predicting low thermal conductivity thermoelectric materials. Employing DFT consumes lots of computational resources. Using ML-driven interatomic potentials (MLIP, e.g., GAP) opens up a faster route, but most potentials are specifically tailored to a certain compound. We aim to generalize the MLIP generation in a Python code-based workflow, combining automatic DFT runs with automated GAP fits. Automation enables easier tests, benchmarks, and validation. T2 - SALSA Make and Measure Conference: Interfaces CY - Berlin, Germany DA - 13.09.2023 KW - Interatomic potentials KW - Machine learning KW - Phonons KW - Thermoelectrics KW - Automated workflows PY - 2023 AN - OPUS4-58374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, R A1 - Seifert, M A1 - George, J A1 - Blaurock, S A1 - Botti, S A1 - Krautscheid, H A1 - Grundmann, M A1 - Sturm, C T1 - Determination of acoustic phonon anharmonicities via second-order Raman scattering in CuI N2 - We demonstrate the determination of anharmonic acoustic phonon properties via second-order Raman scattering exemplarily on copper iodide single crystals. The origin of multi-phonon features from the second-order Raman spectra was assigned by the support of the calculated 2-phonon density of states. In this way, the temperature dependence of acoustic phonons was determined down to 10 K. To determine independently the harmonic contributions of respective acoustic phonons, density functional theory in quasi-harmonic approximation was used. Finally, the anharmonic contributions were determined. The results are in agreement with earlier publications and extend CuI’s determined acoustic phonon properties to lower temperatures with higher accuracy. This approach demonstrates that it is possible to characterize the acoustic anharmonicities via Raman scattering down to zero-temperature renormalization constants of at least 0.1 cm−1. KW - Thermoelectrics KW - Thermal transport KW - Phonon interactions KW - Density functional theory KW - Phonons PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593164 SN - 1367-2630 VL - 25 IS - 12 SP - 1 EP - 12 PB - IOP Publishing AN - OPUS4-59316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -