TY - CONF A1 - Bruno, Giovanni T1 - Absorbtion and Refraction Techniques: Characterization and Non-Destructive Testing of Additively Manufactured Materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread holds equally for industrial and academic research, and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. T2 - c-Kolloquium an dem FRM II Reaktor CY - Munich, Germany DA - 29.07.2016 KW - Computertomographie KW - Metrologie KW - 3D Mikrostruktur KW - Zerstörungsfreie Prüfung KW - Röntgenrefraktion KW - TF Material KW - Analytical Science PY - 2015 AN - OPUS4-38827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Absorption and Refraction Techniques: Characterization and Non-Destructive Testing of Additively Manufactured Materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research, and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will present a new technique in our portfolio, Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load. T2 - Kolloquium an dem ‘Laboratoire National de Metrologie et d’Essais CY - LNE’ Paris, France DA - 09.06.2016 KW - Computertomographie KW - Metrologie KW - 3D Mikrostruktur KW - Zerstörungsfreie Prüfung KW - Röntgenrefraktion KW - Additive Fertigung KW - TF Material KW - Analytical Science PY - 2016 AN - OPUS4-38826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -