TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Schillinger, B. A1 - Schulz, M. A1 - Kardjilov, N. A1 - Manke, I. T1 - Measurement of Hydrogen Distributions in Metals by Neutron Radiography and Tomography N2 - Neutron imaging is a valuable tool for measuring hydrogen distributions qualitatively and quantitatively in metals. Time-resolved neutron radiography allows to measure hydrogen mass flow inside cm thick steel samples with ~10 s temporal resolution. Hydrogen accumulations around cracks in embrittled iron samples can be visualized three-dimensionally by neutron tomography. This quality of information allows new insights for the analysis of damage mechanisms on a micrometer scale, e.g. of hydrogen blistering. Even the gas pressure of molecular hydrogen in crack cavities has been measured from tomographic reconstructions to be in the range of 5 MPa to 15 MPa for technical iron. Further, this method is non-destructive and provides local information in situ and in all three dimensions with a spatial resolution of 20 - 30 µm. The combination with other methods gives a new quality of information, e.g. of the hydrogen allocation on fractured surfaces. T2 - Symposium on large scale facilities CY - Berlin, Germany DA - 09.03.2020 KW - Hydrogen embrittlement KW - Neutron imaging KW - Hydrogen diffusion KW - Neutron radiography KW - Neutron tomography PY - 2020 AN - OPUS4-50548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -