TY - JOUR A1 - Valderrey, Virginia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics N2 - Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1–5×105 M−1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile. KW - Molecular imprinting KW - Anion recognition KW - Antibiotics KW - Benzoxadiazole dyes KW - Charge transfer KW - Fluorescence PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545027 SN - 1521-3765 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Muguruza, A.R. A1 - Odyniec, M.L. A1 - Manhota, M. A1 - Habib, Z. A1 - Rurack, Knut A1 - Blair, J.M.A. A1 - Kuehne, S.A. A1 - Walmsley, A.D. A1 - Pikramenou, Z. T1 - Antibiotic entrapment in antibacterial micelles as a novel strategy for the delivery of challenging antibiotics from silica nanoparticles N2 - Silica materials are popular in biomedical applications as composites and drug delivery platforms due to their low toxicity and biocompatibility. Mesoporous silica nanoparticles are attractive drug delivery systems based on their porous silica framework with high surface area. In the preparation of mesoporous silica frameworks, most commonly, MCM-41, the efficient removal of the template responsible for introducing porous networks, cetyltrimethyl ammonium bromide (CTAB), is a critical step due to the template’s high toxicity in the environment and human health. In this work, we present a new one-pot approach of introducing challenging antibiotics within a silica framework without the need of toxic templates, but instead using micelle formation by an antibacterial agent. We demonstrate that micelles formed by cetylpyridinium chloride (CPC), a known antibacterial agent, entrap antibiotics such as rifampicin and ciprofloxacin. Extensive NMR studies elucidate the precise localisation of the antibiotic within the CPC micelle. Ciprofloxacin is placed between the outer and palisade region while rifampicin is located further into the hydrophobic CPC micelle core. In both cases, the formation of the silica framework can be built around the CPC-antibiotic loaded micelles. The resulting silica nanoparticles show loading of both CPC and antibiotic agents, porosity and dual antibacterial release upon disruption of the micelle within the silica framework. The design not only provides a strategy of a therapeutic design to form porous frameworks but also highlights the potential of precise antibiotic dose and release in nanoparticle systems. KW - Silica KW - Nanoparticles KW - Antibiotics KW - Drug delivery KW - Surfactants PY - 2024 U6 - https://doi.org/10.1016/j.micromeso.2023.112841 SN - 1387-1811 VL - 363 SP - 1 EP - 11 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-58534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -