TY - CONF A1 - Gollwitzer, Christian A1 - Cabeza, S. A1 - Garces, G. T1 - Synchrotron based absorption edge tomography for 3D characterization of the microstructure of Mg-Y-Zn alloys N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the BundesanstaltfürMaterialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, the absorption edge tomography is employed to perform a non-destructive, three-dimensional characterization of the microstructure of metallic alloys. As an example, a high strength Mg-Y-Zn alloy containing long period stacking ordered (LPSO) phases is analysed. The alloy with a nominal composition of Mg97Y2Zn1 was synthesized by melting highly pure magnesium, zinc and a Mg-22%Y master alloy and casting an ingot, which was homogenised at 350 °C and then extruded using an extrusion ratio of 18:1. The results demonstrate that synchrotron based absorption edge tomography is a promising technique to perform a 3D characterization of the microstructure of metallic alloys. T2 - iCT 2018 CY - Wels, Austria DA - 13.02.2018 KW - Absorption edge KW - Synchrotron KW - Alloy KW - Tomography PY - 2018 AN - OPUS4-46427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -