TY - CONF A1 - Rosemann, Paul A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Corrosion resistance of ferritic stainless steels studied with various methods on different time scales N2 - The corrosion resistance of stainless-steels grades is of high importance for the technical safety in different environmental conditions. Processing and surface finish influences the corrosion resistance of ferritic stainless steels, which may be considered for some application in marine environment. Three ferritic stainless steel alloys (X2CrNi12, X2CrTiNb18 and X2CrMoTi18-2) were exposed in four different surface finishes (rolled, dry grinding, glass beaded and electro polished) for five years in marine environment to obtain reliable information about the corrosion resistance. All samples were assessed after 22 and 60 months according to DIN EN ISO 10289 in validation degrees from 1 to 10. Complementary investigation using accelerated chamber test (salt spray test followed by four weeks storage at 30 °C / 80 % relative humidity) and short-term electrochemical methods (electrochemical potentiodynamic reactivation, pitting potentials and the KorroPad method) were conducted to compare their results. The presentation gives an overview on all methods and the generated results, which show benefits and restrictions of long-term, accelerated and short-term corrosion tests. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - Stainless steel KW - Corrosion resistance KW - EPR KW - Corrosion testing KW - Pitting corrosion KW - Atmospheric corrosion KW - Surface treatment PY - 2018 AN - OPUS4-45940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Roßberg, S. A1 - Pensel, P. A1 - Heyn, A. A1 - Burkert, Andreas T1 - Precipitation behavior and corrosion resistance of nickel-free, high-nitrogen austenitic stainless steels N2 - Nickel-free, nitrogen alloyed austenitic stainless-steels, with about 19 wt.-% Mn and 0,8 wt. % N, are an interesting alternative to classic CrNi austenitic stainless steels due to their superior mechanical properties (Rm > 900 MPa, A5 > 50 %, Av > 350 J) in the solution annealed condition. The formation of chromium-rich nitrides during suboptimal heat treatment, processing or application leads to an inhomogeneous distribution of alloying elements in the microstructure, which reduces the corrosion resistance. Consequently, an accurate knowledge of the sensitization behavior is indispensable for the use of nickel-free, high-nitrogen austenitic stainless steels. The relationship between artificial aging, phase formation and corrosion resistance was investigated on the alloys X8CrMnN18-19 (1.3815) and X8CrMnMoN18-19-2 (1.4456), both alloyed with 0,8 wt.-% Nitrogen, in the present work. The microstructural evolution was studied by LM and SEM while the corrosion resistance was characterized with the electrochemical potentiodynamic reactivation (EPR) and the KorroPad indicator-test. Both alloys showed increased corrosion susceptibility within critical aging parameters. Finally, a sensitization diagram was described successfully for both alloys showing the positive effect of molybdenum. T2 - Materials Science and Engineering 2018 (MSE) CY - Darmstadt, Germany DA - 26.09.2018 KW - Corrosion KW - Corrosion resistance KW - Heat treatment KW - KorroPad KW - Nitrogen KW - Pitting corrosion KW - Stainless steel KW - ThermoCalc PY - 2018 AN - OPUS4-46093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -