TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Meyer, A. A1 - Halle, T. T1 - Einfluss von Stickstoff auf Mikrostruktur und Korrosionsverhalten martensitischer nichtrostender Stähle N2 - Die Korrosionsbeständigkeit martensitischer nichtrostender Stähle (MNS) wird wesentlich von der chemischen Zusammensetzung und dem Wärmebehandlungszustand beeinflusst. Beides bestimmt die Verteilung der Legierungselemente im Gefüge und die daraus resultierenden Werkstoffeigenschaften. Das Legieren mit Stickstoff bewirkt im Allgemeinen eine Verbesserung der Lochkorrosionsbeständigkeit von nichtrostenden Stählen. Bei martensitischen nichtrostenden Stählen ist dieser Effekt nicht nur auf den Stickstoffgehalt selbst zurückzuführen, sondern auch auf den gleichzeitig verringerten Kohlenstoffgehalt, der ebenfalls das Ergebnis der Wärmebehandlung beeinflusst. In dieser Arbeit wird der Einfluss von Stickstoff auf die Korrosionsbeständigkeit in Bezug zum Härtungsprozess von MNS dargestellt. Dazu wird vergleichend der Effekt von Austenitisierungsdauer, -temperatur und Abkühlgeschwindigkeit auf Gefüge, Härte und Korrosionsbeständigkeit der MNS X50CrMoV15 und X30CrMoN15 1 untersucht. Die Abkühlgeschwindigkeit wurde mit dem Stirnabschreckversuch gezielt variiert, um den Einfluss von Abkühlgeschwindigkeiten von > 100 K/s bis 1 K/s zu charakterisieren. Die Veränderungen der Korrosionsbeständigkeit werden durch die elektrochemisch potentiodynamische Reaktivierung (EPR) und durch die Bestimmung kritischer Lochkorrosionspotentiale dokumentiert. Neben diesem experimentellen Ansatz werden auch die Ergebnisse von thermodynamischen Berechnungen mit der Software Thermocalc vorgestellt und abschließend auch zur Interpretation des Einflusses von Stickstoff auf die Korrosionsbeständigkeit martensitischer nichtrostender Stähle genutzt. T2 - 18. Werkstofftechnisches Kolloquium der TU Chemnitz CY - Chemnitz, Germany DA - 10.03.2016 KW - Korrosionsbeständigkeit KW - Corrosion resistance KW - Wärmebehandlung KW - Heat treatment KW - Nichtrostende Stähle KW - Stainless steels KW - Thermocalc KW - Thermocalc PY - 2016 AN - OPUS4-37261 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Meyer, A. A1 - Halle, T. T1 - Einfluss von Stickstoff auf Mikrostruktur und Korrosionsverhalten martensitischer nichtrostender Stähle N2 - Die Korrosionsbeständigkeit martensitischer nichtrostender Stähle (MNS) wird wesentlich von der chemischen Zusammensetzung und dem Wärmebehandlungszustand beeinflusst. Beides bestimmt die Verteilung der Legierungselemente im Gefüge und die daraus resultierenden Werkstoffeigenschaften. Das Legieren mit Stickstoff bewirkt im Allgemeinen eine Verbesserung der Lochkorrosionsbeständigkeit von nichtrostenden Stählen. Bei martensitischen nichtrostenden Stählen ist dieser Effekt nicht nur auf den Stickstoffgehalt selbst zurückzuführen, sondern auch auf den gleichzeitig verringerten Kohlenstoffgehalt, der ebenfalls das Ergebnis der Wärmebehandlung beeinflusst. In dieser Arbeit wird der Einfluss von Stickstoff auf die Korrosionsbeständigkeit in Bezug zum Härtungsprozess von MNS dargestellt. Dazu wird vergleichend der Effekt von Austenitisierungsdauer, -temperatur und Abkühlgeschwindigkeit auf Gefüge, Härte und Korrosionsbeständigkeit der MNS X50CrMoV15 und X30CrMoN15 1 untersucht. Die Abkühlgeschwindigkeit wurde mit dem Stirnabschreckversuch gezielt variiert, um den Einfluss von Abkühlgeschwindigkeiten von > 100 K/s bis 1 K/s zu charakterisieren. Die Veränderungen der Korrosionsbeständigkeit werden durch die elektrochemisch potentiodynamische Reaktivierung (EPR) und durch die Bestimmung kritischer Lochkorrosionspotentiale dokumentiert. Neben diesem experimentellen Ansatz werden auch die Ergebnisse von thermodynamischen Berechnungen mit der Software Thermocalc vorgestellt und abschließend auch zur Interpretation des Einflusses von Stickstoff auf die Korrosionsbeständigkeit martensitischer nichtrostender Stähle genutzt. T2 - Forschungsseminar des MDZWP 2016 CY - Magdeburg, Germany DA - 31.03.2016 KW - Korrosionsbeständigkeit KW - Corrosion resistance KW - Wärmebehandlung KW - Heat treatment KW - Nichtrostende Stähle KW - Stainless steels KW - Thermocalc KW - Thermocalc PY - 2016 AN - OPUS4-37262 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Kauss, N. T1 - KorroPad-Prüfung - Neue Anwendungen aus Industrie und Forschung N2 - Mit der KorroPad-Prüfung kann die Lochkorrosionsbeständigkeit nichtrostender Stähle auf sehr einfache, schnelle und kostengünstige Weise eingeschätzt werden. Das KorroPad ist damit für Hersteller, Verarbeiter und Anwender nichtrostender Stähle eine interessante Alternative zu zeitintensiven Langzeitversuchen und komplexen elektrochemischen Untersuchungsmethoden. Die prinzipiellen Funktionsweise der KorroPad-Prüfung wird im Vortrag beschrieben, um anschließend verschiedene Anwendungen aus Industrie und Forschung vorzustellen. Exemplarisch werden dazu die Bewertung von Schleif- und Passivierungsprozessen, die Qualitätskontrolle der Wärmebehandlung und Oberflächenbearbeitung von Schneidwaren vorgestellt. Mit der KorroPad-Prüfung lassen sich aber auch werkstoff- und gefügebedingte Einflüsse auf die Lochkorrosionsbeständigkeit gezielt untersuchen. Dies wird an Beispielen aus aktuellen Forschungsarbeiten dargestellt. T2 - Forschungsseminar des MDZWP e. V. CY - Magdeburg, Germany DA - 13.03.2018 KW - Korrosion KW - Nichtrostender Stahl KW - KorroPad KW - Wärmebehandlung KW - Korrosionsbeständigkeit KW - Lochkorrosion KW - Schneidwaren KW - Korrosionsprüfung PY - 2018 AN - OPUS4-44549 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Harnisch, K. A1 - Klee, K. T1 - Wärmebehandlung und Korrosionsbeständigkeit von CoCrMo-Legierungen N2 - Aufgrund guter mechanischer und chemischer Eigenschaften sowie einer hohen Biokompatibilität sind CoCrMo-Legierungen als Implantatwerkstoffe seit Jahrzehnten fester Bestandteil medizintechnischer Anwendungen. Diese Eigenschaften resultieren bekanntermaßen aus chemischer Zusammensetzung, atomarem Aufbau und dem Gefüge. Letzteres wird durch Legierungszusammensetzung, Herstellungsprozess und Wärmebehandlungen bestimmt. In der Vergangenheit wurden bereits Erkenntnisse zum Einfluss der Mikrostruktur auf mechanische bzw. chemische Eigenschaften von CoCrMo gewonnen. Ebenso wurde in der Literatur das Korrosionsverhalten von CoCrMo im Beisein von Körperflüssigkeiten betrachtet. Bisher fehlt es jedoch an vergleichenden Untersuchung, die das Korrosionsverhalten verschiedener Phasen- bzw. Gefügezustände in verschiedenen Körpermedien betrachten. In dieser Arbeit werden bei einer ausgewählten CoCrMo Legierung verschiedene Gefügezustände durch plastische Verformung und Wärmebehandlung erzeugt und vergleichend untersucht. Das Korrosionsverhalten wird anhand elektrochemischer Untersuchungen in verschiedenen körperflüssigkeitsnahen Lösungen im Vergleich zu Titan charakterisiert und der Einfluss von bestimmten Zusätzen (HCL und H2O2) ermittelt. T2 - 26. Treffen vom Forschungsnetzwerk Muskeloskelettale Biomechanik (MSB-NET) CY - Magdeburg, Germany DA - 07.06.2018 KW - Korrosion KW - Korrosionsbeständigkeit KW - Korrosionsprüfung KW - Wärmebehandlung KW - CoCrMo KW - Titan PY - 2018 AN - OPUS4-45247 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Kauss, N. A1 - Müller, C. T1 - KorroPad-Prüfung - Anwendungen aus Industrie und Forschung - N2 - Mit der KorroPad-Prüfung kann die Lochkorrosionsbeständigkeit nichtrostender Stähle auf sehr einfache, schnelle und kostengünstige Weise eingeschätzt werden. Das Kor-roPad ist damit für Hersteller, Verarbeiter und Anwender nichtrostender Stähle eine interessante Alternative zu zeitintensiven Langzeitversuchen und komplexe elektrochemischer Untersuchungsmethoden. Die prinzipiellen Funktionsweise der KorroPad-Prüfung wird im Vortrag beschrieben, um anschließend verschiedene Anwendungen aus Industrie und Forschung vorzustellen. Exemplarisch werden dazu die Bewertung von Schleif- und Passivierungsprozessen, die Qualitätskontrolle der Wärmebehandlung und Oberflächenbearbeitung von Schneidwaren sowie die Optimierung der Schweißnaht-Nachbehandlung vorgestellt. Mit der KorroPad-Prüfung lassen sich aber auch werkstoff- und gefügebedingte Einflüsse auf die Lochkorrosionsbeständigkeit gezielt untersuchen. Dies wird an Beispielen aus aktuellen Forschungsprojekten dargestellt. Die abschließend dargestellte Charakterisierung vom Sensibilisierungsverhalten mit der KorroPad-Prüfung ist verdeutlicht das breite Anwendungsspektrum bei der Charakterisierung von nichtrostenden Stählen. T2 - Arbeitskreissitzung „Korrosionsuntersuchung und -überwachung“ des GfKORR e. V. CY - Magdeburg, Germany DA - 21.11.2017 KW - Korrosion KW - Nichtrostender Stahl KW - KorroPad KW - Schneidwaren KW - Oberflächenbehandlung KW - Lochkorrosion KW - Wärmebehandlung KW - Sensibilisierung KW - EPR PY - 2017 AN - OPUS4-43141 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Kauss, N. A1 - Halle, T. T1 - Einfluss der Wärmebehandlung auf die Korrosionsbeständigkeit von Schneidwaren N2 - Härte, Schneidleistung und Korrosionsbeständigkeit sind die wichtigsten Qualitätsmerkmale von Schneidwaren, die nur durch eine optimal durchgeführte Wärmebehandlung des martensitischen nichtrostenden Stahls 1.4116 (X50CrMoV15) erreicht werden können. In der industriellen Fertigung wird die Korrosionsbeständigkeit von Schneidwaren durch Wechseltauchversuche überprüft, die herstellerübergreifend eine große Schwankung der Korrosionsbeständigkeit zeigen. In den letzten Jahren wurden neue elektrochemische Untersuchungsmethoden für die Werkstoffgruppe der martensitischen nichtrostenden Stähle entwickelt, welche die geringe Lochkorrosionsbeständigkeit von Schneidwaren auf das Phänomen der Chromverarmung zurückführen. Derzeit wird in der wissenschaftlichen und in der industriellen Gemeinschaft der Schritt des Anlassens als Ursache der Chromverarmung angesehen. Bei Schneidwaren sind die Anlasstemperaturen allerdings zu gering, um die auftretende Chromverarmung zu erklären. Aus diesem Grund wurde eine systematische Untersuchung der wichtigsten Wärmebehandlungsparameter: Härtetemperatur, Haltedauer, Abkühlrate und Anlasstemperatur durchgeführt, um den Einfluss aller Wärmebehandlungsparameter auf das Auftreten von Chromverarmung aufzuklären. Durch die elektrochemisch potentiodynamische Reaktivierung (EPR) erfolgte der Nachweis von Chromverarmung. Außerdem wurde die Lochkorrosionsanfälligkeit durch die anwendernahe KorroPad-Prüfung und die Bestimmung kritischen Lochkorrosionspotentiale ermittelt. Beides zeigt den Einfluss der durch die Wärmebehandlung erzeugten Chromverarmung auf die Lochkorrosionsbeständigkeit, die beim Einsatz und bei der Reinigung von Schneidwaren notwendig sind. T2 - 73. HärtereiKongress 2016 CY - Cologne, Germany DA - 26.10.2016 KW - Wärmebehandlung KW - Korrosionsbeständigkeit KW - Schneidwaren PY - 2016 AN - OPUS4-39469 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul T1 - Einfluss der Wärmebehandlung auf die Korrosionsbeständigkeit martensitischer nichtrostender Stähle (MNS) N2 - Die Korrosionsbeständigkeit martensitischer nichtrostender Stähle (MNS) wird wesentlich durch die Legierungszusammensetzung und die Wärmebehandlung (WB) bestimmt. Verschiedene wissenschaftliche Arbeiten haben bereits gezeigt, dass der Anteil an Chromkarbiden im Gefüge von MNS sehr stark durch die WB (Austenitisierungstemperatur, Abkühlgeschwindigkeit und Anlasstemperatur) beeinflusst wird. Jedoch wurde der Zusammenhang zwischen den einzelnen Teilschritten sowie Parametern der WB und der Korrosionsbeständigkeit von MNS bisher nur unzureichend hergestellt. Daher werden im Rahmen dieser Arbeit systematische Grundlagenuntersuchungen an vier technisch relevanten MNS (X20Cr13, X46Cr13, X50CrMoV15 und X30CrMoN15-1) durchgeführt, um den Einfluss der WB auf die Korrosionsbeständigkeit auf-zuklären. Es werden umfangreiche experimentelle Ergebnisse hinsichtlich Gefüge, Härte und Korrosionsbeständigkeit (EPR, KorroPad, kritische Lochkorrosionspotentiale) vorgestellt und mit thermodynamischen Berechnungen (ThermoCalc) korreliert. Dabei wird aus den Ergebnissen auch abgeleitet, wie Kohlenstoff- und Stickstoffgehalt die Korrosionsbeständigkeit in Relation zur WB beeinflussen. Damit wird der Einfluss aller Wärmebehandlungsschritte und -parameter erstmals eindeutig und unabhängig voneinander für MNS beschrieben. Weiterführend wird erläutert, mit welchem Legierungskonzept und mit welcher WB MNS mit optimaler Korrosionsbeständigkeit hergestellt werden können und wie dies experimentell an technischen Produkten nachweisbar ist. T2 - Öffentliches Promotionskolloquium der Otto-von-Guericke-Universität Magdeburg CY - Magdeburg, Germany DA - 25.01.2017 KW - Wärmebehandlung KW - Korrosionsbeständigkeit KW - martensitische nichtrostende Stähle PY - 2017 AN - OPUS4-39475 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Halle, T. T1 - Wärmebehandlung und Korrosionsbeständigkeit von Messerstählen N2 - Härte, Schneidleistung und Korrosionsbeständigkeit sind die wichtigsten Qualitätsmerkmale von Schneidwaren, die nur durch eine optimal durchgeführte Wärmebehandlung des martensitischen nichtrostenden Messerstahls 1.4116 (X50CrMoV15) erreicht werden können. In den letzten Jahren wurden neue elektrochemische Untersuchungsmethoden für die Werkstoffgruppe der martensitischen nichtrostenden Stähle entwickelt, welche die geringe Lochkorrosionsbeständigkeit von Schneidwaren auf das Phänomen der Chromverarmung zurückführen. Aus diesem Grund wurde eine systematische Untersuchung der wichtigsten Wärmebehandlungsparameter: Härtetemperatur, Haltedauer, Abkühlrate und Anlasstemperatur durchgeführt, um den Einfluss aller Wärmebehandlungsparameter auf das Auftreten von Chromverarmung aufzuklären. Durch die elektrochemisch potentiodynamische Reaktivierung (EPR) erfolgte der Nachweis von Chromverarmung. Außerdem wurde die Lochkorrosionsanfälligkeit durch die anwendernahe KorroPad-Prüfung und die Bestimmung kritischen Lochkorrosionspotentiale ermittelt. Beides zeigt den Einfluss der durch die Wärmebehandlung erzeugten Chromverarmung auf die Lochkorrosionsbeständigkeit, die beim Einsatz und bei der Reinigung von Messerstählen notwendig sind. T2 - AWT-/VDI-W-Arbeitskreis Wärmebehandlung und Werkstofftechnik Chemnitz CY - Chemnitz, Germany DA - 21.02.2017 KW - Wärmebehandlung KW - Korrosionsbeständigkeit KW - Messerstähle PY - 2017 AN - OPUS4-39476 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul T1 - Neue Methoden zur Charakterisierung der Korrosionsbeständigkeit nichtrostender Stähle N2 - Der Vortrag gibt einen Überblick über die Möglichkeiten der KorroPad-Prüfung am Beispiel von geschliffenen Oberflächen und der Wärmebehandlung von Schneidwaren aus nichtrostenden Stählen. T2 - Arbeitskreissitzung des DIN NA 027-02-01 AA „Chirurgische Instrumente“ CY - Tuttlingen, Germany DA - 10.10.2018 KW - Korrosion KW - Nichtrostender Stahl KW - KorroPad KW - Wärmebehandlung KW - Lochkorrosion KW - Korundschleifen KW - Martensitischer nichtrostender Stahl PY - 2018 AN - OPUS4-46645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -