TY - CONF A1 - Das, Chayanika A1 - Witt, Julia A1 - Kastanias, Eleni A1 - Özcan Sandikcioglu, Özlem T1 - Graphene-polymer nanocomposite coatings for corrosion protection of Mg-alloys N2 - Mg is a very promising material for lightweight construction and biomedical applications. However, the applicability of Mg and its alloys is hindered by its high corrosion susceptibility. Moreover, due to the toxicity of most inorganic conversion coating systems, the development of novel pre-treatment strategies for technical alloys are of vital importance. The aim of this study is to develop polymeric bilayer thin films for corrosion protection of Mg-alloys. As polymer matrix, poly(4-vinyl pyridine) (P4VP) was selected due to its semiconducting properties and protonic conductivity. In contrast to ICPs with electronic conductivity, the pH-dependant, reversible protonation/de-protonation capability of the P4VP has been utilized to synthesize environment-responsive coatings. Polyacrylicacid (PAA) was tested as crosslinking layers to improve interfacial interactions between the polymeric layers. The macroscopic corrosion properties of the bilayer coatings were investigated by means of electrochemical methods such as linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) in corrosive media simulating technical and biomedical applications. The presentation summarizes our recent results on the synthesis and characterization of this novel coating system with a special focus on their interfacial stability and corrosion protection properties. T2 - E-MRS 2019 Spring Meeting CY - Nice, France DA - 27.05.2019 KW - Polymer bilayer coatings KW - Graphene polymer nanocomposite KW - Corrosion inhibition KW - Magnesium alloy PY - 2019 AN - OPUS4-49848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Das, Chayanika A1 - Witt, Julia A1 - Kastanias, Eleni A1 - Özcan Sandikcioglu, Özlem T1 - Graphene polymer nanocomposite coatings for corrosion inhibition of mg alloys N2 - Mg is a very promising material for lightweight construction and biomedical applications. However, the applicability of Mg and its alloys is hindered by its high corrosion susceptibility. Moreover, due to the toxicity of most inorganic conversion coating systems, the development of novel pre-treatment strategies for technical alloys are of vital importance. Recently, the application of intrinsically conducting polymers (ICPs) have been introduced as an alternative approach for corrosion protection of Mg alloys. ICPs with electronic conductivity are known to be able to passivate small defects, however they fail in the presence of large defects due to fast coating reduction and increased cation transport if macroscopically extended percolation networks exist. The aim of this study is to develop graphene-polymer nanocomposite thin films for corrosion protection of Mg-alloys. As polymer matrix, poly(4-vinyl pyridine) (P4VP) was selected due to its semiconducting properties and protonic conductivity. In contrast to ICPs with electronic conductivity, the pH-dependant, reversible protonation/de-protonation capability of the P4VP has been utilized to synthesize environment-responsive coatings. The presentation summarizes our recent results on the synthesis and characterization of this novel coating system with a special focus on their interfacial stability and corrosion protection properties. T2 - Eurocorr 2019 CY - Seville, Spain DA - 09.09.2019 KW - Polymer bilayer coatings KW - Ggraphene polymer nanocomposite KW - Corrosion inhibition KW - Magnesium alloy PY - 2019 AN - OPUS4-49849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -