TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz T1 - Trash to treasure: recovery of transition metal phosphates for (electro-)catalytical applications N2 - Wastewaters containing high concentrations of NH4+, PO43- and transition metals are environmentally harmful and toxic pollutants. At the same time phosphorous and transition metals constitute valuable resources. Here, we report the synthesis routes for Co- and Ni-struvites (NH4MPO4∙6H2O, M = Ni2+, Co2+) out of aqueous solutions resembling synthetic/industrial waste water compositions, and allowing for P, ammonia and metal co-precipitation. Furthermore, the as-obtained struvites were further up-cycled. When heated, these transition metal phosphates (TMPs) demonstrate significant changes in the degree of crystallinity/coordination environment involving a high amount of amorphous phases and importantly develop mesoporosity (Figure 1). In this regard, amorphous and mesoporous TMPs are known to be highly promising (electro-)catalysts. Amorphous phases do not represent a simple “disordered” crystal but more a complex system with a broad range of compositions and physicochemical properties, which remain mostly unknown. Consequently, we investigated the recrystallization and amorphization process during thermal treatment and a resolved the complex amorphous/crystalline structures (Figure 2). As a proof-of-principle for their applicational use, the as-obtained TMPs demonstrate significant proton conductivity properties similar to apatite-like structures from room to high temperatures (>800°C). Hence, we have developed a promising recycling route in which environmental harmful contaminants like PO43-, NH4+ and 3d metals would be extracted out of waste waters in the form of precursor raw materials. These raw materials can be then further up-cycled through a simple thermal treatment for their specific application in electrocatalysis. T2 - Goldschmidt Conference 2022 CY - Hawai'i, USA DA - 10.07.2022 KW - Mesoporosity KW - Amorphous phases KW - Transition metals KW - Struvite KW - Phosphates PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552852 UR - https://conf.goldschmidt.info/goldschmidt/2022/meetingapp.cgi/Paper/9501 AN - OPUS4-55285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Röder, Bettina A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Polymorphism in molecular cocrystals controlled by variable temperature ball milling N2 - Mechanochemistry offers a unique opportunity to modify or synthesize new crystal forms. Although the method is very promising, little is known about the mechanochemical means to control the synthesis of a solid form. Using an polymorphic organic cocrystal system, we show here that mechanochemistry can be used to obtain a polymorph transformation under the apparently conventional (thermal) transition point. T2 - Bessy User Meeting 2022 CY - Online meeting DA - 08.12.2022 KW - Mechanochemistry KW - Polymorphism KW - TRIS PY - 2022 AN - OPUS4-56473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Kochovski, Z. A1 - Retzmann, Anika A1 - Scoppola, E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - How do transition metal phosphates crystallise? N2 - Industrial and agricultural waste streams (waste waters, sludges, tailings etc.), which contain high concentrations of NH4+, PO43- and transition metals, are environmentally harmful due to their toxic pollutants. At the same time, phosphorus and selective transition metals such as Cobalt could be potentially depleted as a critical raw material due to the high demand and rapidly declining natural ore deposits. Therefore, due to simultaneous scarcity and abundance, the phosphorus and 3d metal recovery from agricultural, industrial, mining, or urban wastewaters have been an important factor in sustaining our global consumption and preservation of the natural environment. Typically, separate pathways have been considered to extract hazardous substances such as transition metals or phosphate, independently from each other. Here, we investigate the crystallization of transition metal phosphate (TMP) compounds (NH4MPO4∙6H2O, M3(PO4)2∙8H2O with M = Ni2+, Co2+, NixCo1-x2+ M-struvite and M-phosphate octahydrate) out of aqueous solutions, which allow for P, ammonia and metal co-precipitation. The precipitation of these compounds from industrial and agricultural waste waters has high potential as a P- and 3d metal recovery route. For this purpose, a detailed understanding of the crystallization process beginning from combination of solved ions and ending in a final crystalline product is required. Through adjusting the reaction conditions, the stability, crystallite size and morphology of the as-obtained TMPs could be controlled. Detailed investigations of the precipitation process in time using ex- and in-situ techniques provided new insights into their non-classical crystallization mechanism/crystal engineering of these materials. These TMPs involve transitional colloidal nanophases during the crystallization process. Over time, their complex amorphous framework changes significantly resulting simultaneously in an agglomeration and densification of the compound. After extended reaction times these colloidal nanophases condensed to a final crystal. However, the reaction kinetics of the formation of a final crystalline product and the lifetime of these intermediate phases vary significantly depending on the metal cation involved in the precipitation process. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P)-ratios, whereas Co tends to form Co-struvite and/or Co-phosphate octahydrate depending on the (M/P)-ratio. The mixed NixCo1-x system shows a significantly different crystallization behavior and reaction kinetics of the precipitation compared to the pure endmembers. The observed various degree of stability could be linked to the octahedral metal coordination environment in these compounds. The achieved level of control over the precipitates, is highly desirable for 3d- and P-recovery methods. Under this paradigm, the crystals can be potentially upcycled as precursor materials for (electro)catalytical applications. T2 - Granada Münster Discussion Meeting (GMDM) CY - Granada, Spain DA - 30.11.2022 KW - Struvite KW - Transition metal KW - Phosphates KW - Amorphous phases KW - Non-classical crystallization PY - 2022 AN - OPUS4-56478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Mechanically plastic molecular crystals for shapeable optic waveguides N2 - Molecular crystalline materials are usually brittle and are prone to breaking when mechanically stressed. This fragility greatly limits they application in next the generation of adaptable, functional materials. The recent discovery of mechanical compliancy in molecular crystals has solved this problem.1 Based on the nature of the deformation, molecular crystals can be divided into being plastically (irreversibly) or elastically (reversibly) bendable. The plastic deformation is generally associated with anisotropic molecular arrangements and the existence of low energy slip planes which allow a permanent motion within the lattice. Here we report 4-bromo-6-[(6-chloropyridin-2-ylimino)methyl]phenol (CPMBP) as a promising candidate for future waveguide technologies.2 CPMBP has been found to have two different polymorphs with distinct optical and mechanical properties. The brittle crystals of Form I exhibits very weak emission at 605 nm (λex = 425 nm; photoluminescence quantum yield Φ = 0.4 %). In contrast, Form II has a large plastic regime together with a bright emission at 585 nm (λex = 425 nm; Φ = 8.7 %). Taking advantage of the favorable mechanical flexibility and optical properties, Form II was used as a shapeable optical waveguide. By changing the wavelength of the light source, active or passive waveguiding can be realized. CPMBP could thus be used as a flexible wavelength filter. T2 - 30. Jahrestagung der Deutschen Gesellschaft für Kristallographie CY - Online meeting DA - 14.3.2022 KW - Flexible crystals KW - Polymorphism KW - Waveguide PY - 2022 AN - OPUS4-54514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan T1 - Unravelling the depths of complex alloys with grazing exit XANES N2 - High entropy alloys (HEAs) are considered as a new class of alloys containing at least 5 elements with concentrations between 5 and 35 atomic percent. There has been a growing interest in HEAs in the material research field in recent years. Due to their adjustable composition, which enables the modifications of mechanical properties (such as hardness, strength and ductility etc) and their stability at high temperatures, HEAs have been the focus of various studies. Especially the corrosion behavior of HEAs has been a wide research interest. Since the grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect notable information regarding the high temperature oxidation, we consider it as a useful method to investigate how HEAs behave in corrosive environments. The main idea of grazing geometry is to enhance the fluorescence signal of the surface. This enables highly sensitive surface analyses of thin protective film on surface in sub-micrometer scale. Position-sensitive area detectors provide information regarding the signal emitted from the sample as a function of emission angle and thus allow depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which lays within a specific energy range provides XANES data to determine oxidation states. Moreover, since GEXRF profiles can also be simulated through physical models (Urbach 1999), they enable us to determine the layer thickness of a given sample in a non-destructive way. In this contribution, we present the preliminary results of a conceptual study regarding layer properties of CrCoNi medium entropy alloy. The successful implementation of such methodological concept will pave the way for the investigation of more complex alloys with multiple layers, which is planned for the later phases of the project. T2 - Denver X-Ray Conference DXC 2021 CY - Online meeting DA - 02.08.2021 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - XAS PY - 2021 AN - OPUS4-54027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Tuning the mechanical flexibility of organic molecular crystal by polymorphism for flexible optical waveguide N2 - Crystalline molecular materials are usually brittle and are prone to break into pieces upon external mechanical force. This fragility poses challenges for their application in next-generation technologies, including sensors, synthetic tissues, and advanced opto-electronics. The recent discovery of mechanical flexibility in single crystals of molecular materials has solved this issue and enable the design of smart flexible device technologies. Plastic crystals can be deformed permanently. This behavior is based on anisotropic molecular arrangements and the existence of facile slip planes which allow a permanent motion within the lattice. In contrast, elastic crystals can be deformed, but regain the original structure when the force is removed. This phenomenon is related to energetically isotropic molecular packing. Here we report 4-bromo-6-[(6-chlorolpyridin-2-ylimino)methyl]phenol (BCMPMP) as a promising candidate for future waveguide technologies. It turns out that BCMPMP has two different polymorphs with distinct optical and mechanical properties. Form I crystallizes in the orthorhombic space group Pca21 and shows brittle behavior. This structure exhibit very weak emission at 605 nm (λex = 425 nm) together with a low fluorescence quantum yield (Φ = 0.4 %). On the other hand, form II (monoclinic space group P21/c) has a large plastic regime and a bright emission at 585 nm (λex = 425 nm; Φ = 8.7 %). Based on its improved mechanical and optical properties, form II was explored as a bendable optical waveguide. Light was successfully propagated through a straight-shaped and mechanically deformed BCMPMP crystal. Depending on the light source, active or passive waveguiding could be achieved. So BCMPMP can also be used as a flexible wavelength filter. T2 - International School of Crystallography in Erice CY - Online meeting DA - 30.05.2021 KW - Flexible crystals KW - Polymorphism KW - Waveguide PY - 2021 AN - OPUS4-53905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Polymorphic tuning of a flexible organic crystal optical waveguide N2 - Crystalline molecular materials are usually brittle and are prone to break upon external mechanical force. This fragility poses challenges for their application in next-generation technologies, including sensors, synthetic tissues, and advanced opto-electronics. The recent discovery of mechanical flexibility in single crystals of molecular materials has solved this problem and enable the design of smart flexible device technologies. Mechanical flexibility of organic crystals can be tuned by altering the weak interactions in the crystal structure, for examples through polymorphism. Here we report 4-bromo-6-[(6-chlorolpyridin-2-ylimino)methyl]phenol (BCMPMP) as a promising candidate for future waveguide technologies. It turns out that BCMPMP has two different polymorphs with distinct optical and mechanical properties. Form I shows brittle behavior under mechanical stress and exhibits very weak emission at 605 nm (λex = 425 nm) together with a low fluorescence quantum yield (Φ = 0.4 %).In contrast, Form II has a large plastic (irreversible bending) regime and a bright emission at 585 nm (λex = 425 nm; Φ = 8.7 %). Making use of favorable mechanical fexiblity and optical properties, form II was explored as a bendable optical waveguide. Light was successfully propagated through a straight-shaped and mechanically deformed BCMPMP crystal. Depending on the light source, active or passive waveguiding could be achieved. So BCMPMP can also be used as a flexible wavelength filter. T2 - Congress of the International Union of Crystallography - IUCr 2021 CY - Online meeting DA - 14.08.2021 KW - Flexible crystals KW - Polymorphism KW - Waveguide PY - 2021 AN - OPUS4-53906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Mechanically flexible crystals: materials for new generation of responsive materials N2 - Based on the nature of the deformation, molecular crystals can be defined as being plastically (irreversible) or elastically (reversible)bendable. The mechanical response of crystals is thereby directly related to they structure.The structural elements required for a specific mechanical behavior are known, so that compounds with these properties can be synthesized by applying the rules of crystal engineering. T2 - Berlin Science Week CY - Berlin, Germany DA - 01.11.2021 KW - Flexible crystals PY - 2021 AN - OPUS4-53907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Taking Fluorine Interaction to the Extremes using XRD and DFT Simulations N2 - This work aims to investigate the role of F-F and F-π interactions in dictating structural and mechanical properties, through a combination of X-ray powder diffraction and dispersion-corrected density functional. As no benchmarking data exist for F-dominating organic system, we first assess how different functionals affect the mechanical properties of the material. T2 - CRC 1349 Fluorine-Specific Interactions Symposium CY - Online meeting DA - 27.09.2021 KW - High Pressure KW - Fluorine Interaction KW - Hexafluorobenzen KW - Density Functional Theory PY - 2021 AN - OPUS4-53654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Low, Jian L. A1 - Paulus, Beate A1 - Roth, Christina A1 - Emmerling, Franziska T1 - The Effect of Fluorine on Catalysts for the Oxygen Reduction Reaction obtained from Metal Organic Frameworks N2 - The oxygen reduction reaction (ORR) – an important reaction in electrochemical devices, such as fuel cells - is characterized by its sluggish kinetics and therefore requires catalysis. The industry currently relies on platinum as a catalyst, although it is scarce and expensive, hindering the commercial breakthrough of fuel cells in automotive applications. Platinum-free catalysts on basis of nitrogen- and metal doped carbons (NMCs) and fluorinated carbons are promising materials to replace platinum-based catalysts for the ORR. In this work we prepared six metal-organic frameworks (MOFs) by mechanical ball mill grinding and studied their formation by in-situ powder X-ray diffraction. Furthermore, the samples were carbonized under controlled conditions (900°C, 1h, N2-atmosphere) to yield carbon materials, that were employed in ORR-electrocatalysis. The effect of Co-doping and fluorination was systematically studied and outstanding ORR activity was found for the catalyst prepared from the Co-doped fluorinated ZIF-8. T2 - International Symposium on Fluorine-specific interactions CY - Berlin, Germany DA - 27.09.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Fluorination and co-doping of ZIF-8 by ball mill grinding for efficient oxygen reduction electrocatalysis N2 - The oxygen reduction reaction (ORR) is a common process in a variety of electrochemical devices, like fuel cells and metal air batteries. The sluggish kinetics of the ORR require an electrocatalyst to pass this bottleneck.[1] Currently, the most used catalytical systems are platinum-based, with several drawbacks, such as the high cost, low availability, and deactivation by CO poisoning.[2] Efforts are made to develop efficient, durable and low cost catalysts to promote the commercialization of fuel cells. Non-precious metal catalysts are promising candidates for efficient ORR catalysis. It has been shown that pyrolyzing metal organic frameworks (MOFs) under inert conditions yields carbon-rich materials, with evenly distributed metal sites, which possess promising electrocatalytic activity.[3] One widely used type of MOF as ORR catalyst precursors is the zeolitic imidazole framework (ZIF) where metal cations are linked through imidazole-based ligands. Their porous nature is partially retained after carbonization, making MOFs very suitable precursor materials. Herein we report the mechanochemical synthesis and structural analysis of Co-doped ZIF-8 (Zn), as well as two polymorphs (dense and prorous) of fluorinated Co-doped CF3-ZIF-8 (Zn). The samples showed electrochemical performance comparable to platinum after carbonization for 1 h at temperatures ranging between 850 – 1000°C. T2 - XXV General Assembly and Congress of the International Union of Crystallography - IUCr 2021 CY - Prague, Czech Republic DA - 14.08.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Synthesis and characterization of fluorinated Co-Zn-Zeolitic imidazole frameworks for catalysis of the oxygen reduction reaction N2 - The oxygen reduction reaction (ORR) is a common process in a variety of electrochemical devices, like fuel cells and metal air batteries. The sluggish kinetics of the ORR require an electrocatalyst to pass this bottleneck.[1] Currently, the most used catalytical systems are platinum-based, with several drawbacks, such as the high cost, low availability, and deactivation by CO poisoning.[2] Efforts are made to develop efficient, durable and low cost catalysts to promote the commercialization of fuel cells. Non-precious metal catalysts are promising candidates for efficient ORR catalysis. It has been shown that pyrolyzing metal organic frameworks (MOFs) under inert conditions yields carbon-rich materials, with evenly distributed metal sites, which possess promising electrocatalytic activity.[3] One widely used type of MOF as ORR catalyst precursors is the zeolitic imidazole framework (ZIF) where metal cations are linked through imidazolebased ligands. Herein we report the mechanochemical synthesis, structural analysis and of Co-doped ZIF-8 (Zn), as well as its fluorinated counterpart Co-doped CF3 -ZIF-8 (Zn). The samples showed electrochemical performance comparable to platinum after carbonization for 1h at temperatures ranging between 850 – 1000°C. T2 - 15th International conference on materials chemistry (MC15) CY - Online meeting DA - 12.07.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Tipping the Energy Scales to Control Mechanochemical Polymorphism N2 - Control of ball milling conversions is required before the full potential of mechanochemical processing can be realized. It is well known that many parameters affect the outcome of mechanochemical polymorphism, but the energy of ball milling itself is often overlooked. We show here how this parameter alone can exert a significant influence on the polymorphic outcome of ball mill grinding by allowing the selective isolation of two polymorphic forms in their pure form under the same grinding conditions. Furthermore, we show how apparent mechanochemical equilibria can be deceptive. Our results clearly demonstrate the need for careful design and interpretation of ball milling experiments beyond current thinking. T2 - SALSA make and measure CY - Online meeting DA - 16.09.2021 KW - Mechanochemistry KW - Energy KW - Polymorph KW - Cocrystal PY - 2021 AN - OPUS4-53293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Kochovski, Z. A1 - Scoppola, E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Crystallization study of transition metal phosphates: A novel example for non-classical crystallization theory N2 - Industrial and agricultural waste streams (waste waters, sludges, tailings etc.) which contain high concentrations of NH4+, PO43- and transition metals are environmentally harmful and toxic pollutants . Typically, separate pathways have been considered to extract hazardous and transition metals or phosphate as critical raw materials, independently from each other. Here, we report the synthesis routes for transition metal phosphate (TMP) compounds (M3(PO4)2∙8H2O, NH4MPO4∙6H2O, M = Ni2+, Co2+, M-struvite and M-phosphate octahydrate), which allow for P, ammonia and metal co-precipitation. The precipitation of these compounds from industrial and agricultural waste waters could be a promising P-recovery route. Through adjusting the reaction conditions, the stability, crystallite size and morphology of the as-obtained TMP could be controlled. Detailed investigations of the precipitation process using ex- and in-situ techniques provided new insights into their non-classical crystallization mechanism/crystal engineering of these materials. These TMPs involve transitional colloidal nanophases which subsequently aggregate and condense to final crystals after extended reaction times. However, the reaction kinetics of the formation of a final crystalline product vary significantly depending on the metal cation(s) involved in the precipitation process. The occurring amorphous nanophases seem to majorly influence the outcome of crystallization. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P)-ratios, whereas Co tends to form Co-struvite and/or Co-phosphate octahydrate depending on the (M/P)-ratio. The observed various degree of stability could be linked to the octahedral metal coordination environment. The achieved level of control over the precipitates, is highly desirable for 3d- and P-recovery methods. Under this paradigm, the crystals can be potentially upcycled as precursor materials for (electro)catalytical applications 4. T2 - GeoMin Köln Konferenz 2022 CY - Cologne, Germany DA - 11.09.2022 KW - Non-classical crystallization theory KW - Amorphous phases KW - Transition metal KW - Phosphates KW - Diffraction PY - 2022 UR - https://www.geominkoeln2022.de/programme.html AN - OPUS4-55874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Evolution of mesoporous frameworks from precipitated struvite-structured metal phosphate materialsls N2 - Mesoporous transition metal phosphates (TMPs) have attracted major interest due to their high (electro-)catalytic activity suitable for H2 generation, supercapacitors or batteries. Typically, mesoporous materials are synthesized via a template-based route. This way is in the case of TMP because the surfactants used are difficult to remove due to the sensitivity of the mesoporous framework. We present a template-free method including the formation of a precursor phase called M-struvite (NH4MPO4•6H2O, M = Mg2+, Ni2+, Co2+, Ni2+xCo2+1-x) to synthesize mesoporous and amorphous metal phosphates. This method relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneous mesoporous phase associated with the degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the coordination metal coordination environment was followed with diffraction and spectroscopy based in-situ and ex-situ methods. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions between the chemical systems. In a complex amorphous structure, thermal decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes for phosphate materials with a spherical to channel-like pore geometry (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). In addition to this low-cost, environmentally friendly and simple synthesis, M-struvites could grow as a recycling product from industrial and agricultural wastewaters. These waste products could be upcycled through a simple thermal treatment for further applications. T2 - SNI 2022 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities CY - Berlin, Germany DA - 05.07.2022 KW - Struvite KW - Transition metal KW - Phosphate KW - Amorphous phases KW - Mesoporosity PY - 2022 AN - OPUS4-55911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Evolution of mesoporous frameworks from precipitated struvite-structured metal phosphate materials N2 - Mesoporous transition metal phosphates (TMPs) have attracted major interest due to their high (electro-)catalytic activity suitable for H2 generation, supercapacitors or batteries. Typically, mesoporous materials are synthesized via a template-based route. This way is in the case of TMP because the surfactants used are difficult to remove due to the sensitivity of the mesoporous framework. We present a template-free method including the formation of a precursor phase called M-struvite (NH4MPO4•6H2O, M = Mg2+, Ni2+, Co2+, Ni2+xCo2+1-x) to synthesize mesoporous and amorphous metal phosphates. This method relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneous mesoporous phase associated with the degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the coordination metal coordination environment was followed with diffraction and spectroscopy based in-situ and ex-situ methods. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions between the chemical systems. In a complex amorphous structure, thermal decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes for phosphate materials with a spherical to channel-like pore geometry (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). In addition to this low-cost, environmentally friendly and simple synthesis, M-struvites could grow as a recycling product from industrial and agricultural wastewaters. These waste products could be upcycled through a simple thermal treatment for further applications. T2 - ECCG7, European Conference on Crystal Growth CY - Paris, France DA - 25.07.2022 KW - Transition metals KW - Phosphates KW - Struvite KW - Amorphous phases KW - Mesoporosity PY - 2022 AN - OPUS4-55491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musl, O. A1 - Falkenhagen, Jana A1 - Sumerskii, I. A1 - Sulaeva, I. A1 - Mahler, A. K. A1 - Rosenau, T. A1 - Potthast, A. T1 - Mapping the Hydrophobic Composition of Lignosulfonates with 2D HIC-SEC aq. Liquid Chromatography N2 - 2D-LC provides in-depth information on the complex composition of lignosulfonates – information hitherto inaccessible by state-of-the-art lignin analytics. Analysis of 12 industrial lignosulfonates revealed considerable differences in their composition and functional dispersity - properties that are crucial for lignosulfonate usage T2 - Sustainable Materials Research Summit 2022, S.M.A.R.T CY - Vancouver, Canada DA - 07.08.2022 KW - Lignosulfonate KW - Lignin KW - Amphiphilicity KW - Hydrophobic interaction KW - Chromatography (HIC) KW - Size-exclusion chromatography (SEC) KW - Functionality type distribution KW - Two-dimensional liquid chromatography (2D-LC) KW - Molar mass distribution PY - 2022 AN - OPUS4-55510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulla, Hannes A1 - Becker, C. A1 - Paulus, B. A1 - Casati, N. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - In situ investigations of a mechanochemical cocrystal formation by X-ray diffraction in two different milling jars N2 - We present an in situ PXRD investigation of the mechanochemical cocrystal formation of pyrazinamide with pimelic acid in two milling jar materials. DFT calculations of the two synthesized polymorphs suggest that the relative stability is based on a conformation change of pyrazinamide in the cocrystal. T2 - 3. BAM-BfR Workshop CY - Berlin, Adlershof, Germany DA - 15.02.2018 KW - Mechanochemistry KW - Cocrystal KW - Polymorph KW - In situ XRD KW - DFT PY - 2018 AN - OPUS4-44315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piedade, M. F. M. A1 - Joseph, A. A1 - Alves, J. R. A1 - Bernardes, C. E. S. A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Crystal Engineering through Solvent Mediated Control of Molecular Conformation: The Case of 5-Hydroxynicotinic Acid N2 - The importance of molecular conformation for polymorphism and its repercussions in terms of tight control over the industrial production of crystalline organic materials with highly reproducible physicochemical properties has long been recognized. Efforts to understand how a crystallization solvent can direct the formation of a polymorph containing a specific molecular conformation are, however, relatively scarce. Nicotinic acid (NA) and its hydroxyl derivatives (2-, 4-, 5-, and 6-hydroxynicotinic acids) are very good models for such studies. Indeed, regardless of the solvent, NA always crystallizes as a single polymorph with the molecule in the same neutral conformation. In contrast, the hydroxyl derivatives are prone to polymorphism and solvate formation and, depending on the crystallization conditions, the molecules in the crystal lattice can exhibit hydroxyl, oxo, or zwitterionic conformations. The present study focused on 5-hydroxynicotinicacid (5HNA) shows that by judicious selection of the solvent it is possible to obtain 1:1 solvates, where solvation memory is not completely lost and the tautomer preferred in solution persists in the crystalline state: zwitterionic in 5HNA·H2O and neutral in 5HNA·DMSO. Nevertheless, upon thermal desolvation the obtained materials evolve to the same unsolvated form where the molecule is in a zwitterionic conformation. The structures of 5HNA·H2O and 5HNA·DMSO obtained from single crystal-ray diffraction are discussed and compared with that of 5HNA solved from powder data. The energetics of the dehydration/desolvation process was also fully characterized by thermogravimetry (TG), differential scanning calorimetry (DSC) and Calvet microcalorimetry. T2 - BACG 2018 CY - Limerick, Ireland DA - 20.06.2018 KW - Crystal Engineering KW - 5-hydroxynicotinic acid KW - Molecular Conformation PY - 2018 AN - OPUS4-45519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - 31. Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles for catalysis N2 - We present the synthesis of monodisperse monometallic Ni nanoparticles (NPs) and bimetallic NiCu respectively NiCo NPs. The NPs were investigated using SAXS, STEM, EDX, and XANES, showing that the NPs are size tunable and stable while the surface is not entirely covered. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4. T2 - 11th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NPs) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - Insights into the mechanochemical Knoevenagel condensation N2 - Mechanochemistry paves the way to simple, fast, and green syntheses, but there is a lack in understanding of the underlying mechanisms. Here, we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. T2 - Bessy User Meeting 2019 CY - Berlin, Germany DA - 05.12.2019 KW - Mechanochemistry PY - 2019 AN - OPUS4-50122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer embedded MOF N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the Bundesanstalt für Materialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography with submicron resolution at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, metal organic frameworks (MOFs) embedded in polymer are characterized using differential tomography. MOFs are microporous structures of metal ions, coordinated by organic linker molecules, that can be used in a broad field of applications, especially in gas storage and catalysis. In this work, polymer embedded MOFs were extruded into filaments, which were subsequently used for 3d-printing to profit from the specific properties of the MOFs in polymeric materials combined with the arbitrary shapes provided by 3d-printing. For the extrusion, different polymer classes like ABS, polyester- and polyetherurethanes, as well as different MOFs (ZIF-8, ZIF-67, HKUST-1) were used to create MOF containing filaments with a nominal diameter of 3.0 mm. Differential tomography at the edges of the Zn, Co, and Cu was then used to find the distribution of the corresponding MOF in the filament and to analyze the shape of the inclusions. T2 - Beamline Jockey Workshop CY - Abingdon, Oxfordshire, UK DA - 19.02.2020 KW - Additive manufacturing KW - Absorption edge tomography KW - Metal organic framework KW - Synchrotron CT PY - 2019 AN - OPUS4-50350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, M. A1 - Roth, C. A1 - Emmerling, Franziska T1 - Metal phosphonates as proton conductors and ORR catalysts N2 - Metal phosphonates are promising materials for applications in fuel cells, due to their high proton conductivity and higher chemical and thermal stability compared to the industry standard (e.g. Nafion®). Additionally, metal phosphonates are precursors to porous carbon materials with evenly distributed centers for ORR catalysis. As a fast and sustainable synthesis, mechanochemistry is the synthesis method of choice. Thorough characterization is carried out by XRD, MAS-NMR, XAS, BET, and DVS. T2 - 2nd European Workshop on Metal Phosphonates CY - Berlin, Germany DA - 24.09.2019 KW - Phosphonates KW - Proton cunductor KW - Oxygen reduction reaction KW - Catalysis KW - Mechanochemistry PY - 2019 AN - OPUS4-50257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Marquardt, Julien A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Synthesis of Bimetallic Nickel Nanoparticles as Catalysts for the Sabatier Reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhance surface-area-to-volume ratio of NPs is very high, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni nanoparticles were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the catalytically active sites are accessible. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Joint Polish-German Crystallographic Meeting CY - Wroclaw, Poland DA - 24.02.2020 KW - Nanoparticles KW - Synthesis KW - Catalysis PY - 2020 AN - OPUS4-51663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, H. A1 - Rademann, K. T1 - Insights into mechanochemical Knoevenagel condensations N2 - Mechanochemistry paves the way to simple, fast, and green syntheses. Despite considerable effort, there is a lack in understanding of the underlying mechanisms. In situ investigations help to understand these mechanisms, which occur during a mechanochemical reaction. Here we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. The potential of of our approach is shown for diffrent model reactions. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Mechanochemistry KW - In situ KW - Knoevenagel condensation PY - 2019 AN - OPUS4-49694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bernardes, C. A1 - Minas da Piedade, M. A1 - Emmerling, Franziska T1 - Real Time In Situ Study of Simvastatin Crystallization on Levitated Droplets N2 - In this contribution we describe an in-situ study of the crystallization of simvastatin in three solvents. The studies were carried out by solvent evaporation at the µSpot beamline using acoustically levitated solution droplets in combination with simultaneous X-ray diffraction, Raman spectroscopy, and imaging analysis. T2 - 10th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Crystallization KW - Simvastatin KW - In-Situ Characterization PY - 2018 AN - OPUS4-46965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Schutjajew, Konstantin A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of metal phosphonates N2 - The exploration of metal phosphonates chemistry has gained great interest during the last decades, because of their structural diversity. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reactions (OER). Here, we present the in situ investigation of mechanochemical syntheses of different manganese phosphonates by synchrotron X-ray diffraction. Nitrilotri(methylenephosphonic acid) and N,N-Bis(phosphonomethyl)glycine were chosen as ligands. The liquid-assisted milling process can be divided into three steps, including an amorphous stage. One of the products has not been obtained by classical solution chemistry before. These metal phosphonates and/or their derivatives are considered to be active in electrochemical energy conversion. The verification of their applicability is one of the topics of our resent research. T2 - Fundamental Bases of Mechanochemical Technologies CY - Novosibirsk, Russia DA - 25.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - Thermography PY - 2018 AN - OPUS4-46996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, Klaus T1 - In situ investigation of mechanochemical Knoevenagel condensations of benzaldehyde derivates N2 - Mechanochemistry is known for short reaction times, nearly quantitative conversions, and decreasing amount of solvents. Among organic syntheses, the Knoevenagel condensation is an important C-C bond forming reaction. We investigated the reaction of benzaldehyde derivates (nitro- and fluoro-derivates) with malononitrile syntheses by a combination of different in situ investigation techniques. T2 - BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Mechanochemistry KW - In situ PY - 2018 AN - OPUS4-46997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Emmerling, Franziska A1 - Schutjajew, Konstantin A1 - Roth, Christina T1 - In situ investigation of milling reactions and structure determination of the products using X-ray diffraction N2 - Mechanochemistry is a versatile approach for green and fast synthesis of pure substances. By milling the reactants, various organic, inorganic, and metal-organic compounds can be obtained in high yields. Although mechanochemistry is widely used, the underlying mechanisms are not fully understood making mechanochemical reactions difficult to predict. Metal phosphonates are metal-organic compounds accessible by grinding. Because of their structural diversity, the exploration of the chemistry of metal phosphonates has gained considerable interest during the last decades. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reaction (OER). Here, we present the in situ investigation of the mechanochemical synthesis of a manganese(II)-phosphonate by synchrotron X-ray diffraction and thermography. The product has not been obtained by classical solution chemistry before and its crystal structure was determined from PXRD data. The milling process can be divided into different steps, with the product crystallization corresponding with the highest temperature rise. The activity of this metal phosphonate towards OER was measured and is presented here. T2 - International School of Crystallography - 52nd Course: Quantum Crystallography CY - Erice, Italy DA - 1.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - OER KW - Thermography PY - 2018 AN - OPUS4-46998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Haferkamp, Sebastian A1 - Schutjajew, Konstantin A1 - Roth, Christina A1 - Emmerling, Franziska T1 - In situ investigation of mechanochemical syntheses of manganese phosphonates with N-containing ligands N2 - Mechanochemistry is a versatile approach for green and fast synthesis of pure substances. The exploration of the chemistry of metal phosphonates has gained considerable interest during the last decades due to their structural diversity. We synthesized manganese phosphonates in milling reactions. The mechanochemical reactions were investigated in situ to reveal the underlying mechanisms. T2 - Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - In situ KW - Thermography PY - 2018 AN - OPUS4-46999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chapartegui, Ander A1 - Emmerling, Franziska A1 - Schneider, Rudolf T1 - MOFs as optical sensor elements against endocrine disrupting phthalates N2 - The development of optical sensing technologies for Endocrine Disrupting Chemicals (EDCs) was urgently needed to facilitate currently unmet demands on comprehensive monitoring of These substances, thus ensuring consumer safety. T2 - SALSA CY - Berlin, Germany DA - 01.05.2018 KW - MOF KW - Short chained phthalates PY - 2018 AN - OPUS4-46889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kabelitz, Anke A1 - Dinh, H. A. A1 - Emmerling, Franziska T1 - A02: In situ WAXS studies on the crystallization of Al 13 keggin clusters in water N2 - Polynuclear aluminium species (Al13 keggin cluster) find application in different areas like water purification [1], contaminant transport [2], and as pilling clays with high specific surface areas[3], due to their strong binding ability to aggregates and high positive charge. In the present contribution, we report on the in situ investigation of the Al13 sulfate synthesis by synchrotron wide-angle X-ray scattering (WAXS). Al13 cluster were crystallized by precipitating hydrolyzed aluminum solutions by the addition of sodium sulfate. The measurements were performed using a custom-made acoustic levitator as sample holder. The study provides information about the intermediates during the crystallization process. From the data, a mechanism was derived indicating the influence of the crystallization process. T2 - Final Meeting of the CRC 1109 & Edith Flanigen Award Ceremony 2018 CY - Berlin, Germany DA - 10.10.2018 KW - Crystallization KW - WAXS KW - Keggin Cluster PY - 2018 AN - OPUS4-47005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kabelitz, Anke A1 - Emmerling, Franziska A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kraehnert, R. A1 - Kraffert, K. A1 - Schmack, R. T1 - In-situ characterisation of nucleation, growth, crystallisation and dissolution of nanoscaled iron oxides N2 - We present the synthesis of four mesoporous templated iron oxides: Ferrihydrite, Hematite, Maghemite, Magnetite/Maghemite and the influence of water on the crystallization mechanism and the kinetics. The absence of water stabilize the ferrihydrite structure. By monitoring the dissolution in situ by using a QCMB and ex situ microscopy we got details in the dissolution mechanism of ferrihydrite. T2 - Final Meeting of the CRC 1109 & Edith Flanigen Award Ceremony 2018 CY - Berlin, Germany DA - 10.10.2018 KW - Mesoporous KW - Iron oxide KW - Mechanism PY - 2018 AN - OPUS4-47010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemical Knoevenagel condensations of benzaldehyde derivates investigated in situ N2 - Mechanochemistry is widely applicable for the synthesis of inorganic, metal-organic, and organic compounds. It is known for short reaction times, nearly quantitative conversions, and decreasing amount of solvents, which opens the field to more environmentally friendly syntheses routes. Among organic syntheses, the Knoevenagel condensation is an important C-C bond forming reaction leading to α,β-unsaturated compounds. To gain more information on the underlying processes, we investigated the syntheses by a combination of different in situ investigation techniques, including synchrotron X-ray diffraction, Raman spectroscopy and thermography. This combination provides information on the structural changes and temperature influences during milling. Benzaldehyde derivates (nitro- and fluoro-derivates) reacted with malononitrile to the respective benzylidenemalononitriles. The in situ investigations show direct and quantitative conversions. In the case of the fluorinated benzaldehyde derivates we showed the possibility of using liquid substrates in mechanochemical organic synthesis. Surprisingly, after crystallization from a viscous state, the material was suitable for single-crystal X-ray analysis. T2 - Powder Diffraction School 2018 CY - Villigen, Switzerland DA - 24.09.2018 KW - C-C coupling KW - Mechanochemistry KW - In situ KW - Knoevenagel PY - 2018 AN - OPUS4-46320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroh, Julia A1 - Emmerling, Franziska T1 - In situ full phase analysis of the early cement hydration N2 - Fresh cement paste is a suspension consisting of a hydraulic binder (cement), water, and numerous minor components – admixtures. Addition of admixtures aims at specific modification of properties of the fresh cement paste or hardened cementitious building material. Specific admixtures, so-called superplasticizers (SP), are used to improve the flowability of the fresh cement paste with reduced water content. The latter is the starting material for the high-strength concrete. Thus, SPs are essential for the ambitious construction projects. However, uncontrollable retardation of the setting time in presence of SPs is occasionally observed. Obviously, SPs influence early products of the cement hydration leading to changes in the microstructure development. The hardening is thus delayed, and the quality of the resulting building material suffers. The mechanisms of the admixture action during the hydration process are still intensively investigated [1-7]. A detailed understanding of the admixture effects during the early hydration stage is the key to control and individual adjustment of the cement-based construction materials. We use the unique combination of the wall-free sample holder and the time-resolved X-ray scattering analysis to achieve the full information about the hydrate phases formed under the influence of admixtures. We use ultrasonic levitator to start the cement hydration in levitated cement pellets [8, 9]. The sample levitation allows collection of the unimpaired information about cement hydrate phases. The most beneficial is the avoiding of the contributions of the sample holder material to the data signal. We induce the cement hydration by adding water to unhydrated Portland cement during the data acquisition. The full phase composition of the hydrating cementitious system can be gathered in situ using wide angle X-ray scattering (WAXS). During the hydration of cement both crystalline and amorphous hydrate phases are formed. WAXS data contain the information about crystalline phases behind the Bragg reflections, whereas the amorphous hydrates influence the appearance of the background. Application of the data analysis specific for crystalline or amorphous phases is needed. The data quantification by the Rietveld method allows to conclude about the changes of the phase amounts due to the presence of admixture. The calculation of the pair distribution functions allows analysis of the amorphous hydrates. Based on this information, the SP effects and the extent of their involvement into the ongoing reactions can be concluded. A detailed understanding of the complex cement hydration process is envisioned. T2 - Anakon 2019 CY - Münster, Germany DA - 25.03.2019 KW - Cement KW - Admixtures KW - Pair Distribution Functions KW - X-ray diffraction KW - Total scattering analysis PY - 2019 AN - OPUS4-47664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - In situ investigations of mechanochemical reactions N2 - Mechanochemistry paves the way to simple, fast, and green syntheses. Despite considerable effort, there remains a lack in understanding of the underlying mechanisms. In situ investigations help to understand these mechanisms, which occur during a mechanochemical reaction. Here we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. The potential of our approach is shown for different model reactions. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - In situ KW - Mechanochemistry KW - Milling PY - 2019 AN - OPUS4-47701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Pfeifer, Dietmar A1 - Sturm, Heinz T1 - Reinforced UV curable cycloaliphatic epoxy oligosiloxane resin nanocomposite for coating applications N2 - Coating materials are nowadays often required to deliver not only sufficient barrier performance and suited optical appearance but a broad range of other functional properties. The incorporation of inorganic nanoparticles (NPs) is known to improve many key characteristics and provide new functionalities in polymer materials. Presented work aims to prepare and characterize an organic-inorganic coating material designed to bring together advantageous properties of hybrid materials and reinforcement effect delivered from the inorganic NPs embedment. Siloxane-based hybrid resins hold great advantages as coating materials as their properties can be tuned between those of polymers and those of glasses, thus, the compositions with superior thermal and mechanical properties can be achieved. We used Cycloaliphatic Epoxy Oligosiloxane (CEOS) resin as a polymeric matrix where the network formation was achieved by UV induced cationic polymerisation. Boehmite Alumina (BA) nanoparticles were added to CEOS resin as a reinforcing agent and resultant material was processed into films either by bar-coating or by spin-coating depending on further characterization procedure. Two different types of BA NPs, hydrophilic and organophilic, were used in order to assess the impact of particles surface on the resin characteristics. CEOS synthesis by condensation reaction was confirmed using 13C and 29Si NMR. Changes in CEOS photocuring process, resulting from particles incorporation, were monitored by real-time IR spectroscopy. At the same time, the thermal behaviour was evaluated by DSC and TGA methods. Morphology of the coatings was investigated by means of SEM operated in transmission mode. It was observed that BA presence increased the epoxy conversion degree and glass transition temperature. Material formulations providing best film characteristics were determined with regard to the particle type and loading. Compared to the hydrophilic nanoparticles, organophilic BA NPs yield superior overall performance of the foils. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2019 AN - OPUS4-47641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hein-Paar, Jakob A1 - Michalchuk, Adam A. L. A1 - Guilherme Buzanich, Ana T1 - Spectroscopic Insights into the Reactivity of Energetic Materials N2 - Energetic materials (explosives, propellants, pyrotechnics, and gas generators; EM) release large amounts of energy when initiated by mechanical loading and have many technological applications including in energy storage and propulsion. The accidental initiation of an EM – particularly in the wrong setting – has the potential to be catastrophic. Unfortunately, there is little understood about what determines the sensitivity of a given EM. This poses severe restrictions on our ability to design new and safer EMs. Aiming to better understand the initiation mechanisms of EMs, we here investigate the reactivity of simple, isomorphous azides (MN3 M=Li, Na). Both metal azides contain the same explosophoric azido anions, but differ significantly in their reactivity, presumably owing to different bonding interactions between the anion and the metal cation. This interaction offers a promising probe for X-ray spectroscopy and quantum chemical simulations. In noting that mechanical initiation results from mechanical impact – with high local pressures – we are particularly interested in identifying how this bonding interaction changes as a function of pressure. This interaction offers a promising probe for X-ray spectroscopy and quantum chemical simulations. In noting that mechanical initiation results from mechanical impact – with high local pressures – we are particularly interested in identifying how this bonding interaction changes as a function of pressure. Here we show results from DFT simulations that indicate a shift in electronic structure and changes in the metal-azide bond with increasing pressure, which is further investigated through experimental XAS spectra. Together, our results show promising insights into the behaviour of simple metal azide EMs. T2 - SXR2023 - Principles of Functionality From Soft X-Ray Spectroscopy CY - Berlin, Germany DA - 11.09.2023 KW - Energetic materials PY - 2023 AN - OPUS4-58824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irina A1 - Rautenberg, Max A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of phosphonate-based proton conducting metal organic frameworks and hydrogen-bonded metal phosphonates N2 - Proton exchange membrane fuel cells (PEMFCs) are one of the most promising alternative green energy technologies that deliver high energy density without CO2 emissions. The proton conductivity of proton exchange membranes (PEM) contributes to the overall efficiency of a PEMFC. Materials being used as PEMs must exhibit high proton conductivity at the working conditions of the targeted PEMFC. To date, Nafion and Nafion-like polymers with acidic functionality are widely used as membrane materials due to their high proton conductivity in the range of 10-1 to 10-2 Scm-1 at higher relative humidity. However, these materials suffer from high costs, hazardous production process, and poor performance at high temperatures, limiting their versatility. In this context, crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology, owing to their tunable framework structure. However, it is still challenging bulk synthesis for real-world applications of these materials. Herein, we present mechanochemical gram-scale synthesis of series of mixed ligand metal organic frameworks (MOFs) and metal hydrogen‐bonded organic frameworks (MHOFs) using phenylene diphosphonic acid and 1-hydroxyethylidene-1,1-diphosphonic acid with different bipyridyl type of ligands, respectively. In all cases, the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, the frameworks exhibited high proton conductivity. The study demonstrates the potential of green mechanosynthesis for preparations of framework-based proton conducting materials in bulk scale for green energy generation. T2 - 4th International Conference on Phosphonate Chemistry, Science and Technology, ICOPHOS-4 CY - Crete, Greece DA - 02.10.2023 KW - Proton exchange membrane fuel cells KW - Metal organic frameworks KW - Proton conducting materials PY - 2023 AN - OPUS4-58837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fink, Friedrich A1 - Falkenhagen, Jana A1 - Emmerling, Franziska T1 - Mechanochemical valorisation of kraft-lignin N2 - As one of nature's largest carbon sources with an annual production of around 20 billion tonnes, lignin is the third most abundant biopolymer on the planet. It becomes available as technical lignin, which is produced as a by-product in the pulp and paper industry and in smaller quantities in second generation biofuel refineries. Current estimates suggest that less than 10% of all technical lignin is reused. The high polydispersity, complex heterogeneous structure and uncertain reactivity are the major limiting factors for further processing. The most common applications for various technical lignins without extensive modifications are for example: Surface active substances, additives in bitumen, cement and animal feed. One way to make lignin usable is to break the structure into oligomer units and thus reduce the polydispersity and average molar mass. In addition, it is advantageous to introduce new functionalities such as hydroxyl or carbonyl groups when splitting the high-molecular-weight (HMW) fractions, or to convert existing functionalities. In this study, a mechanochemical method is presented that can degrade and modify technical kraft lignin by means of sodium percarbonate (SPC). T2 - 10th Intern. Symp. on the Separation and Characterisation of Natural and Synthetic Macromolecules (SCM-10) CY - Amsterdam, Netherlands DA - 01.02.2023 KW - Technical Lignin KW - Mechanochemical oxidation PY - 2023 AN - OPUS4-57001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz A1 - Scoppola, E. A1 - Kochovski, Z. A1 - Retzmann, Anika A1 - Emmerling, Franziska T1 - Crystallization study of transition metal phosphates: Characterization of a non-classical crystallization pathway N2 - Industrial and agricultural waste streams (waste waters, sludges, tailings etc.), which contain high concentrations of NH4+, PO43- and transition metals, are environmentally harmful due to their toxic pollutants. At the same time, phosphorus and selective transition metals such as Cobalt could be potentially depleted as a critical raw material due to the high demand and rapidly declining natural ore deposits. Therefore, due to simultaneous scarcity and abundance, the phosphorus and 3d metal recovery from agricultural, industrial, mining, or urban wastewaters have been an important factor in sustaining our global consumption and preservation of the natural environment. Typically, separate pathways have been considered to extract hazardous substances such as transition metals or phosphate, independently from each other. Here, we investigate the crystallization of transition metal phosphate (TMP) compounds (NH4MPO4∙6H2O, M3(PO4)2∙8H2O with M = Ni2+, Co2+, NixCo1-x2+ M-struvite and M-phosphate octahydrate) out of aqueous solutions, which allow for P, ammonia and metal co-precipitation. The precipitation of these compounds from industrial and agricultural waste waters has high potential as a P- and 3d metal recovery route. For this purpose, a detailed understanding of the crystallization process beginning from combination of solved ions and ending in a final crystalline product is required. Through adjusting the reaction conditions, the stability, crystallite size and morphology of the as-obtained TMPs could be controlled. Detailed investigations of the precipitation process in time using ex- and in-situ techniques provided new insights into their non-classical crystallization mechanism/crystal engineering of these materials. These TMPs involve transitional colloidal nanophases during the crystallization process. Over time, their complex amorphous framework changes significantly resulting simultaneously in an agglomeration and densification of the compound. After extended reaction times these colloidal nanophases condensed to a final crystal. However, the reaction kinetics of the formation of a final crystalline product and the lifetime of these intermediate phases vary significantly depending on the metal cation involved in the precipitation process. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P)-ratios, whereas Co tends to form Co-struvite and/or Co-phosphate octahydrate depending on the (M/P)-ratio. The mixed NixCo1-x system shows a significantly different crystallization behavior and reaction kinetics of the precipitation compared to the pure endmembers. The observed various degree of stability could be linked to the octahedral metal coordination environment in these compounds. The achieved level of control over the precipitates, is highly desirable for 3d- and P-recovery methods. Under this paradigm, the crystals can be potentially upcycled as precursor materials for (electro)catalytical applications. T2 - HZB Usermeeting 2023 CY - Berlin, Germany DA - 22.06.2023 KW - Struvite KW - Transition metal KW - Phosphates KW - Crystallization KW - Amorphous phases PY - 2023 AN - OPUS4-57775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Wendt, Robert A1 - Kunkel, Benny A1 - Radnik, Jörg A1 - Hoell, Armin A1 - Wohlrab, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Size-Tunable Ni-Cu Core-Shell Nanoparticles: Structure, Composition, and Catalytic Activity N2 - Nanoparticles (NPs) have become important materials for a variety of chemical technologies, including catalysis. One of the main challenges is the reduction of green house gases, such as CO2. One opportunity besides the capturing is the conversion to synthesis gas via the reverse water-gas shift reaction. A facile and efficient method is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core-shell NPs. The diameter of the NPs can be tuned in a range from 6 nm to 30 nm and the Ni:Cu ratio from 30:1 to 1:1. The NPs are structurally characterized with combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray photoelectron spectroscopy, and X-ray absorption fine structure. Using these analytical methods, a core-shell-shell structure their chemical composition is elucidated. A depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO2-supported NiCu core-shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction). T2 - Nanoalloys: recent developments and future perspectives Faraday Discussion CY - London, UK DA - 21.09.2022 KW - Nanoparticles KW - Core-shell KW - Catalysis PY - 2022 AN - OPUS4-56831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Lewis-acidic Zr fluoride catalyst N2 - The Kemnitz et al. developed a fluorolytic route to access metal fluorides 1 such as AlF3 2 and MgF2 3 which possess a high surface area. In aluminium-based systems, the synthetic approach led to amorphous xerogels that can be further converted into Lewis superacids.2 Still, despite zirconium oxide being described as a stronger Lewis acid than other metal oxides4 zirconium fluoride-based materials have only recently been reported or investigated. In this work we extend the class of amorphous Lewis acidic heterogeneous catalysts to an amorphous ZrF4 that is active in C-F bond activation. T2 - CRC 1349 Summer School 2023 CY - Berlin, Germany DA - 28.08.2023 KW - ZrF4 KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2023 AN - OPUS4-58638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Dunne, P. W. A1 - Pinna, Nicola T1 - Dispersible SnO2 nanoparticles - a structural phenomenon N2 - Previous work in the Dunne Group targeted dispersibility of metal oxide nanoparticles, which had been synthesised via an aqueous sol-gel route. Dispersibility was attained by solvothermal surface modification of the particles with trifluoro acetic acid. Part of the studies were tin oxide particles, which is known for its predominant rutile phase. Despite dispersibility in acetone of the particles unexpected peak splitting of the first (110) reflection was observed. Intensive long-term reaction studies on the tin oxide particles exhibited a time dependent extend of the peak splitting observed in XRD character-isation. Extended characterisation using solid-state multinuclear MAS-NMR spectroscopy indicate size dependent structure change due to partial fluorination of the particles during the solvothermal treatment. T2 - RSC Twitter Poster Conference 2022 CY - Online meeting DA - 01.03.2022 KW - SnO2 KW - Nanoparticles PY - 2022 AN - OPUS4-57225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Dunne, P. W. A1 - Pinna, N. T1 - Structure analysis of dispersible SnO2 nanoparticlesStructure analysis of dispersible SnO2 nanoparticles N2 - Previous work in the Dunne Group targeted dispersibility of metal oxide nanoparticles, which had been synthesised via an aqueous sol-gel route. Dispersibility was attained by solvothermal surface modification of the particles with trifluoro acetic acid (TFA). Part of the studies were tin oxide particles, which is known for its predominant rutile phase. Besides the dispersibility in acetone of the particles, an unexpected peak splitting of the (110) reflection was observed, which could be an unknown phase of SnO2 . For crystal growth long-term reaction studies on the tin oxide particles were performed. Interestingly these studies exhibited a time dependent extend of the peak splitting observed in XRD characterisation. Further extended analysis using multinuclear solid-state MAS-NMR spectroscopy indicate a size dependent structure change due to partial fluorination of the particles during the solvothermal treatment. T2 - SALSA Make and Measure 2022 CY - Online meeting DA - 07.09.2022 KW - SnO2 KW - Nanoparticles PY - 2022 AN - OPUS4-57201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Metal fluoride surfaces by protonation with surface immobilized HF N2 - Lewis-acidic zirconium or chromium fluoride surfaces on different aluminium oxide or fluoride substrates. T2 - CRC 1349 Symposium 2021 CY - Berlin, Germany DA - 25.11.2021 KW - HF KW - Heterogeneous catalysis PY - 2021 AN - OPUS4-57226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -