TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - 3D imaging of hydrogen assisted cracking using analyser-based imaging N2 - To better understand the mechanism of hydrogen assisted cracking (HAC), it is important to investigate the 3D structure of the cracks non-destructively. Since, cracks introduced by HAC are usually very small, conventional x-ray imaging methods often lack the required spatial resolution. However, the detection of those cracks can be enhanced by taking advantage of refraction at interfaces within the sample. To image this refractive deflection we employ analyser based imaging (ABI). In this work we aim at proving the enhanced crack detection of ABI by investigating an alluminum alloy weld. T2 - BESSY User Meeting 2015 CY - Berlin, Germany DA - 09.12.2015 KW - X-ray refraction KW - Synchrotron KW - Analyser-based imaging KW - Hydrogen assisted cracking KW - Welding PY - 2015 AN - OPUS4-38278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Modeling of hydrogen-assisted cracking (HAC) in duplex stainless steels (DSS) N2 - Modeling of Hydrogen-Assisted Cracking (HAC) in Duplex Stainless Steels (DSS): - Hydrogen causes significant degradation in DSS and consequently HAC - Mechanisms of HAC have not been fully understood in two-phase microstructures - Mesoscale numerical modeling for HAC in DSS was created, coupled to the macroscale, enabling simulation of HAC in both phases independent from predefined crack paths T2 - International Hydrogen Conference - Material Performance in Hydrogen Environments CY - Jackson Lake Lodge, Moran, Wyoming, USA DA - 11.09.2016 KW - Hydrogen KW - Numerical modeling KW - Duplex stainless steel KW - Hydrogen assisted cracking PY - 2016 AN - OPUS4-37404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzweber, Markus A1 - Sobol, Oded A1 - Wirth, Thomas A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Deuterium permeation and cracking in duplex steels as viewed by ToF-SIMS and HR-SEM with data fusion N2 - Better understanding of hydrogen assisted degradation and trapping mecha-nisms requires sufficient imaging techniques for respective hydrogen-microstructure interaction studies, in particular with multi-phase metallic micro-structures [1]. The present work is focusing on the elucidation of deuterium be-havior in two austenitic-ferritic duplex stainless steels (DSS) under the assumption that deuterium behaves in many ways similarly to hydrogen [2]. For case studies standard 2205 and lean 2101 DSSs were chosen due to the extensive use of these steels in industry [3]. The analyses were conducted by using a novel in-situ permeation and Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) imaging technique or by ex-situ ToF-SIMS imaging following electrochemical charging experiments. Another pioneering procedure was data fusion (including chemometry) of results of powerful laterally resolved chemical analysis and high resolution structural characterization techniques . Results for the ex-situ observations showed a different influence of deuterium loading on the two steel grades as well as different damage mechanisms in each phase. Formation of sub-surface blisters between the ferrite and austenite were obtained in both the standard and the lean DSS. In both steels, an increased deuterium concentration was observed around deformed regions such as cracks, confirming that they originate from the presence of deuterium [4]. The formation of parallel cracks was obtained only in the austenite within the standard duplex whereas in the lean duplex the highest intensity of deuterium was obtained in the austenite along the ferrite-austenite interphase. In comparison, application of the novel in-situ permeation technique enabled to register and record the deuterium permeation through the material and the respective saturation sequence of the two phases as well as the interfaces. Faster diffusion of the deuterium was observed in the ferrite and a direct proof for deuterium enrichment at the austenite-ferrite interface has been given [1]. The integration of the specified techniques gives a better insight into the processes leading to hydrogen induced failure. These two experimental techniques provide very valuable tools for elucidation of respective metallurgical failure mechanisms that can be used for the validation of respective numerical models for hydrogen assisted cracking (HAC). T2 - 19. Arbeitstagung Angewandte Oberflächenanalytik CY - Soest, Germany DA - 05.09.2016 KW - ToF-SIMS KW - Hydrogen assisted cracking KW - Data fusion KW - SEM PY - 2016 AN - OPUS4-37484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Kannengießer, Thomas T1 - Component test for the assessment of hydrogen assisted cracking susceptibility of thick-walled submerged arc welded offshore steels N2 - Offshore wind turbines (OWT) are a key factor of the sustainable energy generation of tomorrow. The continuously increasing installation depths and weight of the OWTs require suitable foundation concepts like monopiles or tripods. Typically, mild steels like the S420ML are used with plate thicknesses up to several hundreds of mm causing high restraints in the weld joints. Due to the large plate thickness, submerged arc welding (SAW) with multiple wires is the state-of-the-art welding procedure. As a result of the very high stiffness of the construction, a certain susceptibility for time-delayed hydrogen-assisted cracking (HAC) may occur. The evaluation of crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e., workshop) scale. The investigated mock-up, weighing 350 kg, comprised heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated via the use of welding fluxes in dry (HD < 5 ml/100g Fe) and moisture condition (HD > 15 ml/100g Fe). The residual stresses were determined by a robot X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and heat affected zone. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and welding parameters. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Component test KW - NDT KW - Waiting time PY - 2023 AN - OPUS4-58672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -