TY - JOUR A1 - Kruschwitz, Sabine A1 - Oesch, T. A1 - Mielentz, Frank A1 - Meinel, Dietmar A1 - Spyridis, P. T1 - Non-Destructive Multi-Method Assessment of Steel Fiber Orientation in Concrete N2 - Integration of fiber reinforcement in high-performance cementitious materials has become widely applied in many fields of construction. One of the most investigated advantages of steel Fiber reinforced concrete (SFRC) is the deceleration of crack growth and hence its improved sustainability. Additional benefits are associated with its structural properties, as fibers can significantly increase the ductility and the tensile strength of concrete. In some applications it is even possible to entirely replace the conventional reinforcement, leading to significant logistical and environmental benefits. Fiber reinforcement can, however, have critical disadvantages and even hinder the Performance of concrete, since it can induce an anisotropic material behavior of the mixture if the fibers are not appropriately oriented. For a safe use of SFRC in the future, reliable non-destructive testing (NDT) methods need to be identified to assess the fibers’ orientation in hardened concrete. In this study, ultrasonic material testing, electrical impedance testing, and X-ray computed tomography have been investigated for this purpose using specially produced samples with biased or random Fiber orientations. We demonstrate the capabilities of each of these NDT techniques for fiber orientation measurements and draw conclusions based on these results about the most promising areas for future research and development. KW - Spectral induced polarization KW - Steel fiber reiniforced concrete KW - Fiber orientation KW - Non-destructive testing KW - Micro-computed tomography KW - Ultrasound PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543520 VL - 12 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel Switzerland AN - OPUS4-54352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Manabaev, K. A1 - Panin, A. A1 - Sjöström, W. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Meinel, Dietmar A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Different approaches for manufacturing Ti-6Al-4V alloy with triply periodic minimal surface sheet-based structures by electron beam melting N2 - Targeting biomedical applications, Triply Periodic Minimal Surface (TPMS) gyroid sheet-based structures were successfully manufactured for the first time by Electron Beam Melting in two different production Themes, i.e., inputting a zero (Wafer Theme) and a 200 µm (Melt Theme) wall thickness. Initial assumption was that in both cases, EBM manufacturing should yield the structures with similar mechanical properties as in a Wafer-mode, as wall thickness is determined by the minimal beam spot size of ca 200 µm. Their surface morphology, geometry, and mechanical properties were investigated by means of electron microscopy (SEM), X-ray Computed Tomography (XCT), and uniaxial tests (both compression and tension). Application of different manufacturing Themes resulted in specimens with different wall thicknesses while quasi-elastic gradients for different Themes was found to be of 1.5 GPa, similar to the elastic modulus of human cortical bone tissue. The specific energy absorption at 50% strain was also similar for the two types of structures. Finite element simulations were also conducted to qualitatively analyze the deformation process and the stress distribution under mechanical load. Simulations demonstrated that in the elastic regime wall, regions oriented parallel to the load are primarily affected by deformation. We could conclude that gyroids manufactured in Wafer and Melt Themes are equally effective in mimicking mechanical properties of the bones. KW - Electron beam melting KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531595 SN - 1996-1944 VL - 14 IS - 17 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-53159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dang, V. H. A1 - François, R. A1 - L’Hostis, V. A1 - Meinel, Dietmar T1 - Propagation of corrosion in pre-cracked carbonated reinforced mortar N2 - This paper deals with the initiation and propagation of corrosion in mortar specimens precracked under mechanical loading and carbonated in climate accelerated conditions (50 % CO2–65 % RH)for 15–23 weeks. Mechanical loading led to transverse macro-cracks and damage at the steel-mortar interface characterized by micro-cracks (cover controlled cracking) which favour the carbonation of crack walls and the interface with the steel bar. Wetting–drying cycles performed after carbonation favoured corrosion initiation all along the steel bar because of the carbonated interface and corrosion propagation because of the creation of corrosion cracks which appear to develop from the micro-cracks induced by the mechanical load. Results also show that rust develops all around the perimeter of the carbonated steel bar but that the corrosion layer is thicker in the lower half surface of the reinforcement than that observed in the upper half. Results indicate that the distribution and composition of corrosion products depend on the thickness of the rust layer and that the multilayered structure of rust depends mainly on its thickness. KW - Carbonation KW - Corrosion product KW - Steel bar KW - X-ray tomography PY - 2015 U6 - https://doi.org/10.1617/s11527-014-0338-z SN - 1359-5997 VL - 48 IS - 8 SP - 2575 EP - 2595 PB - Springer AN - OPUS4-39057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kelly, U. A1 - Richter, S. A1 - Redenbach, C. A1 - Schladitz, K. A1 - Scheuerlein, C. A1 - Wolf, F. A1 - Ebermann, P. A1 - Lackner, F. A1 - Schoerling, D. A1 - Meinel, Dietmar T1 - Nb3Sn wire shape and cross sectional area inhomogeneity in Rutherford cables N2 - During Rutherford cable production the wires are plastically deformed and their initially round shape is distorted. Using X-ray absorption tomography we have determined the 3D shape of an unreacted Nb3Sn 11 T dipole Rutherford cable, and of a reacted and impregnated Nb3Sn cable double stack. State-of-theart image processing was applied to correct for tomographic artefacts caused by the large cable aspect ratio, for the segmentation of the individual wires and subelement bundles inside the wires, and for the calculation of the wire cross sectional area and shape variations. The 11 T dipole cable cross section oscillates by 2% with a frequency of 1.24 mm (1/80 of the transposition pitch length of the 40 wire cable). A comparatively stronger cross sectional area variation is observed in the individual wires at the thin edge of the keystoned cable where the wire aspect ratio is largest. KW - X-ray absorption tomography KW - Image processing KW - Accelerator magnet coils KW - Superconducting PY - 2018 U6 - https://doi.org/10.1109/TASC.2018.2791637 SN - 1051-8223 SN - 1558-2515 VL - 28 IS - 4 SP - Article 4800705, 1 EP - 6 PB - IEEE Journals & Magazines AN - OPUS4-44556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andrade, C. A1 - Saucedo, L. A1 - Rebolledo, N. A1 - Cabeza, S. A1 - Meinel, Dietmar T1 - X-Ray computed tomography and traditional analysis of a capillary absorption test in cement pastes N2 - Water absorption testing has the attraction of being simple, relatively quick and use water as a fluid which is the key substance in the possible concrete deterioration. However, in spite of the advantages its application has remained empirical, except for the testing of resistance to frost, through the identification of the critical degree of saturation. Rilem TC-116 studied this test, among others, for the characterization of concrete resistance against transport through the concrete pore network. Results indicated a low discriminating ability of the absorbency for qualifying concrete resistance and then, it seemed necessary to try to move forward by making the link between the absorption testing and the concrete pore microstructure. In the present work, thanks to the X-Ray computed tomography, it is described the evolution of the water front in three paste-specimen with different w/c ratios (different pore radius distributions). The observations allowed us to deduce that all the pores start to fill simultaneously, but the bigger ones fill quicker and rise less. The saturation degree is measured along the height of the sample, showing that each pore size has a different rate which becomes constant after the first hour. Washburn’s equation was applied to the progressive advance of the water front, resulting in a pore radius much smaller than the one expected. KW - Capillary absorption KW - Pore size distribution KW - X-ray CT KW - Gravimetry PY - 2020 U6 - https://doi.org/10.1016/j.cemconcomp.2020.103634 VL - 113 SP - 103634 PB - Elsevier Ltd. CY - London AN - OPUS4-51487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Myrach, Philipp A1 - Jonietz, Florian A1 - Meinel, Dietmar A1 - Suwala, Hubert A1 - Ziegler, Mathias T1 - Calibration of thermographic spot weld testing with X-ray computed tomography N2 - The paper presents an attempt for the calibration of an active thermography method that is suitable for the non-destructive evaluation of spot welds. Nowadays, the quality of spot welds is commonly characterised by the application of random chisel tests, which are time consuming, expensive and destructive. Recently a non-destructive testing method by means of active thermography was proposed that relies on the fact that the mechanical connection formed by the spot weld also serves as a thermal bridge between the two steel sheets joined in the welding process. It is shown in this paper that this thermal bridge can be thermographically characterised by extracting a measure for the spot weld diameter and hence the quality of the spot weld. The determination of the absolute value of the diameter hereby relies on a calibration of the testing system, which is performed by means of X-ray computed tomography in this study. The experiments were carried out using different experimental approaches, namely transmission as well as reflection geometry wSetup in reflectionith laser illumination. A comprehensive evaluation of samples produced using different welding currents, hence different quality, was carried out in order to validate the thermographic results. KW - Thermography KW - Spot welds KW - Spot welding KW - Computed thomography KW - Non-destructive testing PY - 2017 U6 - https://doi.org/10.1080/17686733.2017.1281554 SN - 1768-6733 SN - 2116-7176 VL - 14 IS - 1 SP - 122 EP - 131 PB - Taylor & Francis CY - London AN - OPUS4-40180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pulikowski, D. A1 - Lackner, F. A1 - Scheuerlein, C. A1 - Meinel, Dietmar A1 - Savary, F. A1 - Tommasini, D. A1 - Pajor, M. T1 - Testing mechanical behavior of Nb3Sn Rutherford cable during coil winding N2 - In the framework of the development of high field magnets made of Nb3Sn superconductor for projects like HL-LHC and FCC studies, it is needed to refine the understanding of the coil winding process and its impact on the overall mechanical behavior of the conductor. For this purpose, a new cable winding setup has been developed in order to compare the windability of different Nb3Sn Rutherford cables. In addition, various geometrical cable inspection methods were tested and compared. First experimental results obtained with the new set-up for winding tests are summarized. T2 - 2016 Applied Superconductivity Conference (ASC’16) CY - Denver, Colorado, USA DA - 04.09.2016 KW - Coil winding KW - Rutherford cable KW - X-ray absorption tomography PY - 2017 U6 - https://doi.org/10.1109/TASC.2017.2656179 SN - 1051-8223 SN - 1558-2515 VL - 27 IS - 4 SP - 1 EP - 4 PB - IEEE AN - OPUS4-39357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Meinel, Dietmar A1 - Willer, F. ED - Fitzenreiter, M. ED - Willer, F. ED - Auenmüller, J. T1 - Röntgen-Mikro-Computertomographie (µCT) - Virtuelle Freilegung innenliegender Strukturen N2 - Im Frühjahr 1969 wurde bei Ausgrabungen der Universität Bonn unter Leitung von Elmar Edel auf der Qubbet el-Hawa ein außergewöhnliches Depot mit Materialien einer antiken Gusswerkstatt gefunden. Im Zuge der Fundteilung gelangten die meisten Stücke des Konvolutes in das Ägyptische Museum der Universität Bonn und werden dort aufbewahrt. Die Deponierung des für die Forschung zur antiken Metallurgie bisher einzigartigen Konvoluts geschah im Zuge der Nachnutzung von Grabanlagen aus dem Alten Reich (um 2100 v. u. Z.) in der ägyptischen Spätzeit (um 550 – 400 v. u. Z.). Das Depot enthält Objekte, die alle Fertigungsstufen von Metallgegenständen im Wachsausschmelzverfahren dokumentieren. Es wurden Stücke von Rohwachs sowie Wachsmodelle und die zu deren Herstellung genutzten Negativformen gefunden. Weiterhin enthielt es vollständige Gussformen, die in einem aufwendigen Mehrschalenverfahren hergestellt wurden und teilweise bereits für den Guss ausgebrannt worden sind. Schließlich zählen einige Metallfiguren sowie weitere figürliche Objekte zum Konvolut, die alle in den Bereich einer kunsthandwerklichen Werkstatt deuten. Eine Besonderheit stellen zudem Gussformen dar, in denen Fragmente von Metallfiguren zur Reparatur im Überfangguss vorbereitet waren. Das Depot wurde in der Gesamtpublikation der Bonner Grabungen bisher nur summarisch vorgestellt. 2014/15 initiierten die Abteilung Ägyptologie der Universität Bonn und das LVR-LandesMuseum Bonn unter Ludwig D. Morenz und Michael Schmauder ein gemeinsames und von der Fritz-Thyssen-Stiftung gefördertes Forschungsprojekt, das von Martin Fitzenreiter, Johannes Auenmüller und Frank Willer geleitet wurde. In Kooperation mit Dietmar Meinel (Bundesanstalt für Materialforschung und -prüfung Berlin / BAM, Fachbereich 8.5 Mikro-ZfP), Roland Schwab (Curt-Engelhorn-Zentrum Archäometrie gGmbH, Mannheim), Gerwulf Schneider (FU Berlin, Exzellenzcluster TOPOI), Ursula Baumer und Patrick Dietemann (beide Doerner-Institut / München), Thorsten Geisler-Wierwille (Steinmann Institut für Geologie, Mineralogie und Paläontologie der Universität Bonn) sowie Ursula Tegtmeier (Labor für Archäobotanik der Universität Köln) wurden die Objekte des Konvolutes eingehend und mit zeitgemäßen Verfahren untersucht. Die Ergebnisse dieses Forschungsprojekts werden in dieser Publikation vorgelegt. KW - Mikro-CT KW - Bronzeguss KW - Digitale Bildverarbeitung PY - 2016 SN - 978-3-86893-225-6 SP - 82 EP - 117 PB - EB-Verlag CY - Berlin AN - OPUS4-39208 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar T1 - Computertomographie in der BAM N2 - Überblicksvortrag über die Aktivitäten des FB 8.5 im Bereich der industriellen Computertomographie T2 - 6. Geo-CT / Imaging Workshop CY - Institut für Geowissenschaften, Jena, Germany DA - 10.11.2016 KW - Mikro-CT KW - Synchrotron CT KW - In-situ 3D-CT PY - 2016 AN - OPUS4-39209 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Lellinger, D. A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Crack propagation in PE-HD induced by environmental stress cracking (ESC) analyzed by several imaging techniques N2 - Different imaging techniques were employed to monitor Full Notch Creep Test (FNCT) experiments addressing environmental stress cracking in more detail. The FNCT is a well-established test method to assess slow crack growth and environmental stress cracking of polymer materials, especially polyethylene. The standard test procedure, as specified in ISO 16770, provides a simple comparative measure of the resistance to crack growth of a certain material based on the overall time to failure when loaded with a well-defined mechanical stress and immersed in a liquid medium promoting crack propagation. Destructive techniques which require a direct view on the free fracture surface, such as light microscopy and laser scanning microscopy, are compared to non-destructive techniques, i.e. scanning acoustic microscopy and xray micro computed tomography. All methods allow the determination of an effective crack length. Based on a series of FNCT specimens progressively damaged for varied Durations under standard test conditions, the estimation of crack propagation rates is also enabled. Despite systematic deviations related to the respective Imaging techniques, this nevertheless provides a valuable tool for the detailed evaluation of the FNCT and its further development. KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Full notch creep test (FNCT) KW - X-ray computed tomography (CT) KW - Laser scanning microscopy (LSM) KW - Scanning acoustic microscopy (SAM) PY - 2018 U6 - https://doi.org/10.1016/j.polymertesting.2018.08.014 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 544 EP - 555 PB - Elsevier AN - OPUS4-45766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poyet, S. A1 - Dridi, W. A1 - L'Hostis, V. A1 - Meinel, Dietmar T1 - Microstructure and diffusion coefficient of an old corrosion product layer and impact on steel rebar corrosion in carbonated concrete N2 - Corrosion is the major degradation pathway affecting reinforced concrete structures. In the long-term, the rust layer might become thick and slow down the diffusion of oxygen from the atmosphere to the steel. With this in mind, the mineralogy, microstructure and diffusion properties of an old and thick corrosion product layer were investigated. Despite the presence of macropores, the gas diffusion coefficient was found to be low. The impact of the layer on the oxygen diffusion was evaluated using Fick’s law. The results showed that the layer could reduce the flux of oxygen only in a specific configuration. KW - Steel reinforced concrete KW - Rust KW - X-ray computed tomography KW - Micro-CT PY - 2017 U6 - https://doi.org/10.1016/j.corsci.2017.06.002 VL - 2017 IS - 125 SP - 48 EP - 58 PB - Elsevier B.V. CY - Radarweg 29, 1043 NX Amsterdam, The Netherlands AN - OPUS4-41784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obaton, A-F. A1 - Fain, J. A1 - Djemaï, M. A1 - Meinel, Dietmar A1 - Léonard, Fabien A1 - Mahé, E. A1 - Lécuelle, B. A1 - Fouchet, J-J. A1 - Bruno, Giovanni T1 - In vivo XCT bone characterization of lattice structured implants fabricated by additive manufacturing N2 - Several cylindrical specimens and dental implants, presenting diagonal lattice structures with different cell sizes (600, 900 and 1200 µm) were additively manufactured by selective laser melting process. Then they were implanted for two months in a sheep. After removal, they were studied by Archimedes’ method as well as X-ray computed tomography in order to assess the penetration of bone into the lattice. We observed that the additive manufactured parts were geometrically conform to the theoretical specifications. However, several particles were left adhering to the surface of the lattice, thereby partly or entirely obstructing the cells. Nevertheless, bone penetration was clearly visible. We conclude that the 900 µm lattice cell size is more favourable to bone penetration than the 1200 µm lattice cell size, as the bone penetration is 84 % for 900 µm against 54 % for 1200 µm cell structures. The lower bone penetration value for the 1200 µm lattice cell could possibly be attributed to the short residence time in the sheep. Our results lead to the conclusion that lattice implants additively manufactured by selective laser melting enable better bone integration. KW - Biomedical engineering KW - Dentistry KW - Medical imaging KW - X-ray computer tomography PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-418648 SN - 2405-8440 IS - 3 SP - Article e00374, 1 EP - 21 PB - Elsevier Limited CY - 125 London Wall London, EC2Y 5AS United Kingdom AN - OPUS4-41864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Geometrical features and mechanical properties of the sheet-based gyroid scaffolds with functionally graded porosity manufactured by electron beam melting N2 - Functionally graded porous scaffolds (FGPS) constructed with pores of different size arranged as spatially continuous structure based on sheet-based gyroid with three different scaling factors of 0.05, 0.1 and 0.2 were produced by electron beam powder bed fusion. The pore dimensions of the obtained scaffolds satisfy the values required for optimal bone tissue ingrowth. Agglomerates of residual powder were found inside all structures, which required post-manufacturing treatment. Using X-ray Computed Tomography powder agglomerations were visualized and average wall thickness, wall-to-wall distances, micro- and macro-porosities were evaluated. The initial cleaning by powder recovery system (PRS) was insufficient for complete powder removal. Additional treatment by dry ultrasonic vibration (USV) was applied and was found successful for gyroids with the scaling factors of 0.05 and 0.1. Mechanical properties of the samples, including quasi-elastic gradients and first maximum compressive strengths of the structures before and after USV were evaluated to prove that additional treatment does not produce structural damage. The estimated quasi-elastic gradients for gyroids with different scaling factors lie in a range between 2.5 and 2.9 GPa, while the first maximum compressive strength vary from 52.5 for to 59.8 MPa, compressive offset stress vary from 46.2 for to 53.2 MPa. KW - Additive manufacturing KW - Electron beam KW - Powder bed fusion KW - Triply periodic minimal surfaces KW - Functionally graded porous scaffolds KW - X-ray computed tomography PY - 2023 U6 - https://doi.org/10.1016/j.mtcomm.2023.106410 SN - 2352-4928 VL - 35 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-57682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obaton, A.-F. A1 - Fain, J. A1 - Meinel, Dietmar A1 - Tsamos, Athanasios A1 - Léonard, F. A1 - Lécuelle, B. A1 - Djemaï, M. T1 - In Vivo Bone Progression in and around Lattice Implants Additively Manufactured with a New Titanium Alloy N2 - The osseointegration in/around additively manufactured (AM) lattice structures of a new titanium alloy, Ti–19Nb–14Zr, was evaluated. Different lattices with increasingly high sidewalls gradually closing them were manufactured and implanted in sheep. After removal, the bone–interface implant (BII) and bone–implant contact (BIC) were studied from 3D X-ray computed tomography images. Measured BII of less than 10 µm and BIC of 95% are evidence of excellent osseointegration. Since AMnaturally leads to a high-roughness surface finish, the wettability of the implant is increased. The new alloy possesses an increased affinity to the bone. The lattice provides crevices in which the biological tissue can jump in and cling. The combination of these factors is pushing ossification beyond its natural limits. Therefore, the quality and speed of the ossification and osseointegration in/around these Ti–19Nb–14Zr laterally closed lattice implants open the possibility of bone spline key of prostheses. This enables the stabilization of the implant into the bone while keeping the possibility of punctual hooks allowing the implant to be removed more easily if required. Thus, this new titanium alloy and such laterally closed lattice structures are appropriate candidates to be implemented in a new generation of implants. KW - Osseointegration KW - X-ray computed tomography KW - Additive manufacturing KW - Machine learning segmentation PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-577066 VL - 13 IS - 12 SP - 1 EP - 18 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar A1 - Ulbricht, Alexander A1 - Gardei, André T1 - Classic Materials Testing in the Light of CT N2 - Currently, mandatory requirements and recommendations for the detection of irregularities in laser beam welded joints are based on classic micrographs as set out in the standard ISO 13919-1:2019. Compared to classic micrographs, computed tomography enables a non-destructive, three-dimensional and material-independent mode of operation, which delivers much more profound results. Even in building material testing, methods with limited informative value can be checked and supplemented by CT examinations. T2 - 13th International Conference on Industrial Computed Tomography (iCT2024) CY - Wels, Austria DA - 06.02.2024 KW - Computed Tomography KW - Additive Manufacturing KW - Machine-Learning Segmentation KW - Air Void System PY - 2024 AN - OPUS4-59568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -