TY - CONF A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Investigations of Aged Metal Seals for Interim Storage N2 - The storage of spent fuel and high level radioactive waste in Germany is performed in interim storage containers with double lid systems. The lids are bolted and equipped with metal seals (e.g. Helicoflex®) to ensure the safe enclosure of the inventory. The used metal seals have a layered structure consisting of three components as can be seen schematically in the cross-sectional view in Fig. 1. In the center a helical spring is positioned that is surrounded by two C-shaped jackets and is mainly responsible for generation of the required restoring force. The inner jacket is made of stainless steel and homogenizes the restoring force of the helical spring. The outer jacket is made of silver or aluminium which both are soft metals in comparison to the contact partners (lid and container body). During bolting of the lid to the container body the seal is compressed. The generated restoring force of the helical spring causes a plastic deformation of the outer jacket and adapts to the surfaces of the lid and the container body. Hence, leakage paths are closed and the sealing function is generated. Typical durations for existing interim storage licenses in Germany are 40 years, but it can be expected that they have to be extended to longer periods as a final repository will not be available before the end of the running licence periods. This extension of license periods requires a solid understanding of the long-term behaviour of the seals under storage conditions. To meet this challenge long-term investigations have been started at Bundesanstalt für Materialforschung und –prüfung (BAM) in 2009. These tests focus on seals assembled in test flanges which are stored at temperatures ranging from room temperature to 150 °C for accelerated ageing. The aged seals are tested repeatedly after certain ageing steps and the leakage rate as indicator for sealing performance, the remaining seal force, and the useable resilience upon decompression are determined. In the poster an update on the performed investigations in respect to earlier publications (Grelle et al. 2019, Goral et al. 2023) will be given and the implications of the results for resilient long term safety will be presented. Additionally, a focus will be laid on the currently planned further investigations and the question “What is additionally needed for evaluation of an interim storage period extension in regard to the used metal seals?” will be addressed. T2 - safeND2023: Forschungssymposium des BASE CY - Berlin, Germany DA - 13.09.2023 KW - Metal seal KW - Interim storage KW - Ageing PY - 2023 AN - OPUS4-58568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuerlein, C. A1 - Rehmer, Birgit A1 - Finn, Monika A1 - Uhlemann, Patrick A1 - Savary, F. A1 - Lackner, F. T1 - Mechanical properties of the HL-LHC 11 Tesla Nb3Sn magnet constituent materials N2 - A test campaign was launched to determine the mechanical properties of the HL-LHC 11 T Nb₃Sn magnet components in order to accurately model the mechanical properties in Finite Element simulations that predict the stress and strain distribution in these magnets. Static and dynamic test methods have been applied for determining elastic materials behavior, and highly accurate Young’s moduli are obtained with the dynamic methods resonance and impulse excitation. These non-destructive methods also enable temperature dependent modulus measurements during in situ heat cycles. T2 - Applied Superconductivity Conference CY - Denver, USA DA - 04.09.2016 KW - Young´s modulus KW - Tensile KW - Compression KW - Temperature dependence PY - 2016 AN - OPUS4-37922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior, tensile properties and microstructural features of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in additive manufacturing (AM) process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and its relationship with the microstructural features of AM-parts, especially in loading conditions typical for safety-relevant applications. Within the scope of the presented ongoing investigations, a basic microstructural characterization, tensile tests at room and elevated temperature (400°C) as well as a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime are carried out in the as-built state. After failure, different techniques are used to describe the failure mechanisms of the specimens. The AM-Specimens are provided by the Fraunhofer institute for production systems and design technology and investigated at the BAM following the philosophy of the TF-Project AGIL. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - DED-L KW - LMD KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-48067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prabhakara, Prathik A1 - Heckel, Thomas A1 - Gohlke, Dirk A1 - Brackrock, Daniel A1 - Manzoni, Anna T1 - Ein synergistischer Ansatz zur Charakterisierung anisotroper Materialien mit Hilfe von Ultraschall und Mikrostrukturanalyse N2 - Es wird eine Studie zur Charakterisierung eines anisotropen Stahls vorgestellt, bei der Ultraschalluntersuchungen mit Mikrostrukturanalysen verbunden werden. Das Material weist hohe Festigkeit und Korrosionsbeständigkeit auf, zugleich ist mit anisotropen Eigenschaften die mechanischen und betrieblichen Eigenschaften beeinflussen zu rechnen. Vorläufige Ergebnisse lassen vermuten, dass weitere Untersuchungen notwendig sind, um die Fähigkeiten und Grenzen des Materials genau zu bestimmen. Es wird ein systematischer Ansatz mit Array- Prüfköpfen, Time-of-Flight Diffraction (TOFD) Technik und mikrostrukturellen Untersuchungen angewendet, um die Wechselwirkung zwischen Anisotropie und Mikrostruktur des Stahls zu analysieren. Ultraschallprüfungen mit der TOFD-Technik und in Tauchtechnik liefern Einblicke in das anisotrope Verhalten des Werkstoffes, einschließlich entsprechenden Kornorientierung, Dämpfung und Schallgeschwindigkeitsvariation. Diese Messungen führen in Verbindung mit mikrostrukturellen Analysen zu einem tieferen Verständnis des Materialverhaltens. Unser Hauptziel ist es, ein Framework zu erstellen, welches die Ultraschallantwort anisotroper Materialien mit ihren mikroskopischen Struktureigenschaften verbindet. Die vorgestellte Methodik ermöglicht eine zerstörungsfreie und zügige Bewertung der Materialintegrität, was besonders bei der Anwendung von Hochleistungsmaterialien relevant ist. Durch diesen integrativen Ansatz werden verschiedener Charakterisierungsmethoden kombiniert, um ein umfassenderes Materialverständnis zu erreichen. T2 - DGZfP-Jahrestagung 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - Ultrasonic Testing KW - Time-offlight Diffraction (TOFD) KW - Microstructure Analysis KW - Non-Destructive Testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600122 UR - https://www.ndt.net/?id=29535 AN - OPUS4-60012 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Benismail, Nizar A1 - Altmann, Korinna T1 - Interlaboratory comparisons for obtaining reliable data on microplastic detection methods N2 - Since microplastics (MPs) can be found everywhere and are becoming a problem of high concern, it is necessary to understand their occurrence and fate in the environment. However, to obtain data of high quality is very challenging, since measurement operating procedures differ from laboratory to laboratory. Currently, there are no standardized methods to analyze microplastics. One promissing possibility to adress standardization of the methodology and operating procedures are interlaboratory comparisons (ILCs). In this contribution we report the first results of an ILC on microplastic detection methods organized under the pre-stantdardisation plattform of VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods”, within the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. The ILC has gathered 84 participants all over the world representing all continents. BAM, as the project leader, produced a set of reference microplastic materials, which have been distributed to all the participants together with the measurement protocols and reporting data templates. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - ILC KW - Microplastic KW - Py-GC/MS KW - Polyethylene KW - µ-Raman KW - µ-FTIR KW - Polyethylene Terephtalate KW - TED-GC/MS PY - 2024 AN - OPUS4-60038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Drago, C. A1 - Altmann, Korinna A1 - Wiesner, Yosri T1 - Standardization Methods for the Analysis of Microplastics (10 100µm) in Food Matrix: Sample Preparation and Digestion of Milk Powder. N2 - Monitoring of microplastics in food matrices is crucial to determinate the human exposure. By direct ingestion microplastics could be released in the food during the production, through packaging and by consumer’s use. The absence of standard methods to quantify and detect different size range and type of microplastics has led to difficult and time consuming procedural steps, poor accuracy and lack of comparability. In this work, matrix characterization and laboratory experiments were used to investigate the efficiency of sample preparation in milk powder. This information is crucial to compile a standard procedure for sample preparation and digestion of common milk powder to detect different particle sizes and types of polymers. Charaterisation is done by TGA and TOC measurements. T2 - SETAC Europe 2024 CY - Sevilla, Spain DA - 05.05.2024 KW - Microplastics KW - Harmonisation in microplastics KW - Polymer 3R KW - Microplastics in milk PY - 2024 AN - OPUS4-60034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saber, Yassin A1 - Zocca, Andrea A1 - Günster, Jens T1 - Fully automated and decentralized fused filament fabrication of ceramics for remote applications N2 - Manufacturing of ceramic components in remote (i.e., geographically isolated) settings poses significant challenges where access to conventional manufacturing facilities is limited or non-existent. Fused Filament Fabrication (FFF) enables the rapid manufacturing of ceramic components with complex geometries. Parts formed by FFF require subsequent debinding and sintering to reach full density. Debinding and sintering are typically executed in separate steps with different equipment, necessitating extensive human handling which hinders process automation and may be challenging for the operator in isolated environments. This poster presents an innovative approach: the integration of all process steps into a single, fully automated system, streamlining the process and minimizing human involvement. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed enables mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. Ceramic parts are printed onto thin sacrificial rafts, which are built using an interface material with the same binder as the ceramic filament. After the print is completed, the heat-resistant print bed with all parts is transferred seamlessly with a carrier system into a high-temperature furnace for debinding and sintering. During sintering the sacrificial raft is disintegrated, allowing for unconstrained sintering of the ceramic parts and easy removal of the finished parts. In conclusion, our integrated approach enables significant advancements in the fabrication of complex ceramic components in remote environments with increased efficiency and minimal human handling. T2 - yCAM 2024 CY - Tampere, Finnland DA - 06.05.2024 KW - Fused Filament Fabrication PY - 2024 AN - OPUS4-60057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Schaarschmidt, J. A1 - von Hartrott, P. A1 - Bruns, M. A1 - Birkholz, H. A1 - Waitelonis, J. A1 - Hickel, Tilmann T1 - Seamless Science with the Platform MaterialDigital (PMD): Demonstration of Semantic Data Integration as Good Practices N2 - Following the new paradigm of materials development, design, and optimization, digitalization is the main goal in materials sciences and engineering (MSE) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD) aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific support in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are semantically represented on a prototypical basis which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this poster presentation illustrates demonstrators developed and deployed within the PMD project. Semantically anchored using the mid-level PMD Core Ontology (PMDco), they address data transformation leading to a novel data management which is based on semantic integrated data. The PMD data acquisition pipeline (DAP), which is fueled by traditional, diverse data formats, and a pipeline applying an electronic laboratory notebook (ELN) as data source are displayed. Additionally, the efficient combination of diverse datasets originating from different sources is demonstrated by the representation of a use case dealing with the well-known Orowan relation. T2 - 9. Dresdner Werkstoffsymposium CY - Dresden, Germany DA - 16.05.2024 KW - Semantic Data KW - Data Integration KW - Plattform MaterialDigital KW - Demonstrators KW - Electronic Lab Notebook PY - 2024 AN - OPUS4-60102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Lohrke, Heiko A1 - Lilienthal, A. J. T1 - Outdoor Gas Plume Reconstructions: A Field Study with Aerial Tomography N2 - This paper outlines significant advancements in our previously developed aerial gas tomography system, now optimized to reconstruct 2D tomographic slices of gas plumes with enhanced precision in outdoor environments. The core of our system is an aerial robot equipped with a custom-built 3-axis aerial gimbal, a Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor for CH4 measurements, a laser rangefinder, and a wide-angle camera, combined with a state-of-the-art gas tomography algorithm. In real-world experiments, we sent the aerial robot along gate-shaped flight patterns over a semi-controlled environment with a static-like gas plume, providing a welldefined ground truth for system evaluation. The reconstructed cross-sectional 2D images closely matched the known ground truth concentration, confirming the system’s high accuracy and reliability. The demonstrated system’s capabilities open doors for potential applications in environmental monitoring and industrial safety, though further testing is planned to ascertain the system’s operational boundaries fully. T2 - 20th International Symposium on Olfaction and Electronic Nose CY - Grapevine, Texas, USA DA - 12.05.2024 KW - Aerial Robot KW - TDLAS KW - Gas Tomography KW - Plume PY - 2024 AN - OPUS4-60108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Hoffmann, Kristin T1 - Lifetime Barcoding of Polystyrene Beads with Fluorescent Nanocrystals for Fluorescent Lifetime Detection in Flow Cytometry N2 - Multiplexed encoding schemes of nano- and micrometer sized polymer particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the same excitation and emission wavelength, thus reducing instrumental costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically <10ns, the fluorescence LTs of ternary semiconductor QDs which represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This presents a time region that can barely be covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed, and the encoded particles will then be used for fluorescence assays for the analysis of several targets in parallel. Therefore, the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs in one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoell, A. A1 - Heimann, M. A1 - Wegner, Karl David A1 - Haas, S. A1 - Emmerling, Franziska A1 - Schorr, S. T1 - On the usage of anomalous SAXS to analyzethe structure and composition of bimetallic nanoparticles and quantum dots N2 - Tailor-made nanoparticles are of increasing interest in e.g. catalysis, as sensor materials, analytical assays, or can have superior photophysical properties. A major issue concerning the preparation of high-quality and functional nanoparticles is a good control of particle size, shape, polydispersity, and composition. Small Angle X-ray Scattering (SAXS) is a non-destructive method for the analysis of nanostructures in a wide variety of materials. This method allows determining averaged structural parameters on a length scale from just above atomic sizes up to several 100 nanometers such as sizes, size distributions, volume fractions, and inner surface sizes. Moreover, anomalous Small Angle X-ray Scattering (ASAXS) exploits the anomalous dispersion of the scattering amplitudes near the X-ray absorption edges of the elements contained in the sample. These element sensitive contrast variations can be used to analyse average composition fluctuations on the nm scale. Two kinds of nanoparticles are chosen here to elaborate the advantages of ASAXS in the analysis of complex materials. A facile and efficient methodology is developed for the thermal synthesis of size-tunable, stable, and uniform bimetallic NiCu core–shell nanoparticles (NPs) for various application in catalysis. Their diameter can be tuned in a range from 6 nm to 30 nm and the Ni:Cu ratio is adjustable in a wide range from 1:1 to 30:1. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small-angle X-ray scattering (ASAXS), X-ray absorption fine structure, and X-ray photoelectron spectroscopy. Here, we focus on the ASAXS method and its ability to analyses nanostructure parts and their compositions at once. As a result, a NiCu alloyed core surrounded by a Ni enriched shell and an outer NiO shell was found. Semiconductor nanocrystals (quantum dots, QDs) are well known for their superior photophysical properties and enabled advancements in several key technologies of the 21st century and numerous technological applications like in photovoltaics, LED displays, photocatalysis, and biosensing. To achieve high photoluminescence quantum yields (PLQY) and enhanced photostability the QD core needs to be passivated by a second semiconductor, which possess a larger band gap to confine the charges within the QD core. An important parameter is thereby the lattice mismatch between the core and shell. To avoid strong lattice strain, which would alter the photophysical properties, an intermediary shell can be used as a lattice adapter between the core and the outer shell leading to core/shell/shell systems. These systems have shown to possess high PLQYs combined with a strong long-term stability and can be found in modern QLED displays. ASAXS was used here to better understand the core/shell/shell structure of InP/ZnSe/ZnS QDs to enable a correlation between their structural and photophysical properties. T2 - IUCr - International Union of Crystallography CY - Melbourne, Australia DA - 22.08.2023 KW - ASAXS KW - Quantum dot KW - Core/shell materials KW - Safer by design PY - 2023 AN - OPUS4-58812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Marquez, R. M. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - Exploring the photoluminescence of gold NCs and Ag2S NPs to boost their SWIR emission N2 - Current challenges and objectives for non-invasive optical bioimaging are deep tissue penetration, high detection sensitivity, high spatial and temporal resolution, and fast data acquisition. A promising spectral window to tackle these challenges is the short-wave infrared (SWIR) ranging from 900 nm to 1700 nm where scattering, absorption, and autofluorescence of biological components are strongly reduced compared to the visible/NIR. At present, the best performing SWIR contrast agents are based on nanomaterials containing toxic heavy-metal ions like cadmium or lead, which raises great concerns for biological applications. Promising heavy-metal free nanoscale candidates are gold nanoclusters (AuNCs) and Ag2S nanoparticles (NPs). The photoluminescence (PL) of both types of nanomaterials is very sensitive to their size, composition of their surface ligand shell, and element composition, which provides an elegant handle to fine-tune their absorption and emission features and boost thereby the size of the signals recorded in bioimaging studies. Aiming for the development of SWIR contrast agents with optimum performance, we dived deeper into the photophysical processes occurring in these nanomaterials, thereby exploring in depth how the environment, surface ligand composition, and the incorporation of transition metals influence the optical properties of AuNCs and Ag2S NPs. We observed a strong enhancement of the SWIR emission of AuNCs upon exposure to different local environments (in solution, polymer, and in the solid state). Addition of metal ions such as Zn2+ to Ag2S based NPs led to a strong PL enhancement, yielding PL quantum yields of about 10% and thus making them highly suitable for non-invasive deep imaging of vascular networks and 3D fluid flow mapping. T2 - NaNaX 10 - Nanoscience with Nanocrystals CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Quantum dots KW - Ag2S KW - Fluorescence KW - SWIR KW - Gold nanocluster KW - Nanomaterial KW - bioimaging PY - 2023 AN - OPUS4-58104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - SWIR luminescent nanomaterials – key chemical parameters for bright probes for in vivo bioimaging N2 - A current challenge for studying physio-pathological phenomena and diseaserelated processes in living organisms with non-invasive optical bioimaging is the development of bright optical reporters that enable deep tissue penetration, a high detection sensitivity, and a high spatial and temporal resolution. The focus of this project are nanomaterials, which absorb and emit in the shortwave infrared (SWIR) between ~900–2500 nm where scattering, absorption, and autofluorescence of the tissue are strongly reduced compared to the visible and NIR. T2 - QD2024 - 12th International Conference on Quantum Dots CY - Munich, Germany DA - 18.03.2024 KW - Quantum dots KW - Advanced nanomaterials KW - Fluorescence KW - Quality assurance KW - Gold nanocluster KW - Shortwave infrared KW - Spectroscopy KW - Bioimaging PY - 2024 AN - OPUS4-59783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwettmann, K. A1 - Stephan, D. A1 - Nytus, N. A1 - Radenberg, M. A1 - Weigel, Sandra T1 - Post carbon road - The endless cycle of bitumen reuse N2 - In Germany, the reuse of asphalt has a long tradition. Since the 1980s, the reclaimed asphalt has been recycled achieving a reuse rate of around 90% and thus a very high value in the last years. In the future, instead of the amount, the quality of the reclaimed asphalt will be more important because the recycled asphalt will be reused again and again. Thus, these asphalt mixes are in the second or even third cycle of reuse. Concerning this situation, the question arises if asphalt can be reused several times without any loss in quality. An important factor affecting the asphalt quality is the binder bitumen. During the production, construction and service life, the ageing of this binder occurs causing a hardening of the bitumen. To compensate this hardening, additives for the reclaimed asphalt in terms of rejuvenation agents (rejuvenators) gain in importance. With these rejuvenators, the physical properties of bitumen can be modified e.g. the hardness and the stiffness reduced. However, the mechanism of the rejuvenation agents and the effects of the bitumen chemistry are largely unknown because the composition of the products varies very strongly. But with growing knowledge about these mechanisms and effects of the rejuvenation agents, the chemical composition and thus the physical and ageing behavior of bitumen can be targeted modified by the use of suitable rejuvenators. In this work, the actual results of the project Postcarbone road should be presented including investigations about the chemical and physical mechanisms as well as the efficiency of different rejuvenators. Further, a model for the cyclic reuse of bitumen should be developed. Based on this model, the choice of a suitable rejuvenation agent for the considered bitumen or rather asphalt should be possible. The project Postcarbone road (392670763) is funded by the German Research Foundation (DFG). T2 - 7th Eurasphalt and Eurobitume Congress CY - Online meeting DA - 15.06.2021 KW - Bitumen KW - Multiple ageing and rejuvenation KW - Conventional testing KW - DSR KW - BBR KW - FTIR KW - Asphaltene content KW - Column chromatography PY - 2021 AN - OPUS4-53489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kathan, Michael A1 - Kovanicek, Petr A1 - Jurissek, Christoph A1 - Senf, Antti A1 - Dallmann, Andre A1 - Thünemann, Andreas A1 - Hecht, Stefan T1 - Photocontrolling imine exchange kinetics to modulate inherent characteristics of self-healing polysiloxane networks N2 - Materials that respond to the environment by changing their properties are critical for developing autonomously adaptive systems. However, to reversibly influence a material's inherent characteristics, such as its ability to self-heal, from distance without continuously expending energy, remains a challenging task. Herein, we report on the modul at ion of imine exchange kinetics by light, manifested in a remote controllable dynamic covalent polymer network. Simple mixing of a commercially available amino-functionalized polysiloxane with small amounts of a photoswitchable diarylethene cross-linker, carrying two aldehyde groups, yields a rubbery material. Its viscoelastic and self-healing properties can be reversibly tuned with everyday light sources, such as sunlight. Our two-component system offers the unique advantage that self-healing takes place continuously without any additives at ambient conditions and is neither dependent on continuous illumination nor does it require recent damage. Overall, our approach allows for the local amplification of intrinsic material properties in a permanent yet reversible fashion. The availability of the inexpensive sta1ting materials on a multi-gram scale, the easy synthesis of the polymer network, and its convenient handling paired with high versatility make our Approach highly applicable to create custom-tailored adaptive materials. T2 - POLYDAYS 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - Self-healing KW - Polymer PY - 2016 AN - OPUS4-37623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fuhrmann, A. A1 - Göstl, R. A1 - Wendt, R. A1 - Kötteritzsch, J. A1 - Hager, M. D. A1 - Schubert, U. S. A1 - Brademann-Jock, Kerstin A1 - Thünemann, Andreas A1 - Nöchel, U. A1 - Behl, M. A1 - Hecht, S. T1 - Conditional repair by locally switching the thermal healing ability of dynamic covalent polymers ON and OFF with light N2 - Healable materials are able to repair inflicted damages, herin often applied: dynamic covalent polymer networks. We have shown in this study that light of different colors shift the Diels-Alder and retro Diels-Alder crosslinking and decrosslinking equilibrium. This effect was utilized for self-healing of a polymer film. Small-angle X-ray scattering was used to quantifiy the polymeric mesh size on a nanoscale. T2 - Polydays 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - Polymer KW - Small-angle X-ray scattering KW - SAXS KW - Self-healing PY - 2016 AN - OPUS4-37570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandl, F. A1 - Lederle, F. A1 - Härter, C. A1 - Thünemann, Andreas A1 - Beuermann, S. T1 - From gaseous vinylidene fluoride to electroactive poly(vinylidene fluoride) – Inducing β-phase by formation of block copolymers and composite materials N2 - Polymeric core-shell particles were synthesized in a semi-batch emulsion polymerization process. The shell of the particles consist of PVDF with a high amount of beta-phase. Small-angle X-ray scattering (SAXS) was used to quantify the size of the cores of the particles and the thickness of the shell. T2 - Macromolecular Colloquium Freiburg CY - Freiburg, Germany DA - 20.02.2019 KW - Small-angle x-ray scattering KW - SAXS KW - Nanoparticle KW - Polymer PY - 2019 AN - OPUS4-47467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Characterization of silver nanoparticles in cell culture medium containing fetal bovine serum N2 - Nanoparticles are being increasingly used in consumer products worldwide, and their toxicological effects are currently being intensely debated. In vitro tests play a significant role in nanoparticle risk assessment, but reliable particle characterization in the cell culture medium with added fetal bovine serum (CCM) used in these tests is not available. As a step toward filling this gap, we report on silver ion release by silver nanoparticles, and changes in the particle radii and in their protein corona when incubated in CCM. Particles of a certified reference material (CRM), p1, and particles of a commercial silver nanoparticle material, p2, were investigated. The colloidal stability of p1 is provided by the surfactants polyethylene glycole-25 glyceryl trioleate and polyethylene glycole-20 sorbitan monolaurate, whereas p2 is stabilized by polyvinylpyrrolidone (PVP). Dialysis of p1 and p2 reveal that their silver ion release rates in CCM are much larger than in water. Particle characterization was performed with asymmetrical flow field-flow fractionation (FFF), small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and electron microscopy. p1 and p2 have similar hydrodynamic radii of 15 nm and 16 nm, respectively. The silver core radii are 9.2 and 10.2 nm. Gel electrophoresis and subsequent peptide identification reveal that albumin is the main corona component of p1 and p2 after incubation in CCM, which consists of Dulbeccos Modified Eagle Medium with 10% fetal bovine serum added. T2 - 6th International Colloids Conference CY - Berlin, Germany DA - 19.06.2016 KW - SAXS KW - Nanoparticle KW - Silver KW - Albumin PY - 2016 AN - OPUS4-36639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hein-Paar, Jakob A1 - Michalchuk, Adam A. L. A1 - Guilherme Buzanich, Ana T1 - Spectroscopic Insights into the Reactivity of Energetic Materials N2 - Energetic materials (explosives, propellants, pyrotechnics, and gas generators; EM) release large amounts of energy when initiated by mechanical loading and have many technological applications including in energy storage and propulsion. The accidental initiation of an EM – particularly in the wrong setting – has the potential to be catastrophic. Unfortunately, there is little understood about what determines the sensitivity of a given EM. This poses severe restrictions on our ability to design new and safer EMs. Aiming to better understand the initiation mechanisms of EMs, we here investigate the reactivity of simple, isomorphous azides (MN3 M=Li, Na). Both metal azides contain the same explosophoric azido anions, but differ significantly in their reactivity, presumably owing to different bonding interactions between the anion and the metal cation. This interaction offers a promising probe for X-ray spectroscopy and quantum chemical simulations. In noting that mechanical initiation results from mechanical impact – with high local pressures – we are particularly interested in identifying how this bonding interaction changes as a function of pressure. This interaction offers a promising probe for X-ray spectroscopy and quantum chemical simulations. In noting that mechanical initiation results from mechanical impact – with high local pressures – we are particularly interested in identifying how this bonding interaction changes as a function of pressure. Here we show results from DFT simulations that indicate a shift in electronic structure and changes in the metal-azide bond with increasing pressure, which is further investigated through experimental XAS spectra. Together, our results show promising insights into the behaviour of simple metal azide EMs. T2 - SXR2023 - Principles of Functionality From Soft X-Ray Spectroscopy CY - Berlin, Germany DA - 11.09.2023 KW - Energetic materials PY - 2023 AN - OPUS4-58824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Fähler, Sebastian A1 - Fähler, Sebastian T1 - Thermomagnetic generators with magnetocaloric materials for harvesting low grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we give an overview on our research, covering both materials and systems. We demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Though magnetocaloric materials had been the first choice also for thermomagnetic generators, they require some different properties, which we illustrate with Ashby plots for materials selection. Experimentally we compare La-Fe-Co-Si and Gd plates in the same thermomagnetic generator. Furthermore, we discuss corrosion and deterioration under cyclic use is a severe problem occurring during operation. To amend this, composite plates using polymer as a matrix have been suggested previously. T2 - Dresden Days of Magnetocalorics CY - Dresden, Germany DA - 13.11.2023 KW - Thermomagnetic material KW - Waste heat recovery KW - Generator PY - 2023 AN - OPUS4-58865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irina A1 - Rautenberg, Max A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of phosphonate-based proton conducting metal organic frameworks and hydrogen-bonded metal phosphonates N2 - Proton exchange membrane fuel cells (PEMFCs) are one of the most promising alternative green energy technologies that deliver high energy density without CO2 emissions. The proton conductivity of proton exchange membranes (PEM) contributes to the overall efficiency of a PEMFC. Materials being used as PEMs must exhibit high proton conductivity at the working conditions of the targeted PEMFC. To date, Nafion and Nafion-like polymers with acidic functionality are widely used as membrane materials due to their high proton conductivity in the range of 10-1 to 10-2 Scm-1 at higher relative humidity. However, these materials suffer from high costs, hazardous production process, and poor performance at high temperatures, limiting their versatility. In this context, crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology, owing to their tunable framework structure. However, it is still challenging bulk synthesis for real-world applications of these materials. Herein, we present mechanochemical gram-scale synthesis of series of mixed ligand metal organic frameworks (MOFs) and metal hydrogen‐bonded organic frameworks (MHOFs) using phenylene diphosphonic acid and 1-hydroxyethylidene-1,1-diphosphonic acid with different bipyridyl type of ligands, respectively. In all cases, the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, the frameworks exhibited high proton conductivity. The study demonstrates the potential of green mechanosynthesis for preparations of framework-based proton conducting materials in bulk scale for green energy generation. T2 - 4th International Conference on Phosphonate Chemistry, Science and Technology, ICOPHOS-4 CY - Crete, Greece DA - 02.10.2023 KW - Proton exchange membrane fuel cells KW - Metal organic frameworks KW - Proton conducting materials PY - 2023 AN - OPUS4-58837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Effect of heat treatment on residual stress in additively manufactured AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBFLB) allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution in as-built state (AB) and after post-process heat treatments (HT). RS in single edge notch bending (SENB) subjected to different HT are investigated (HT1: 1h at 265°C and HT2: 2h at 300°C). T2 - ESRF User Meeting 2023 CY - Grenoble, France DA - 07.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress PY - 2023 AN - OPUS4-56982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertural, Christina A1 - George, Janine T1 - Vibe Check via Machine Learning: Testing the Prototype N2 - Vibrational properties play a key role in determining the stability and thermal conductivity behaviour of materials. The quasi- harmonic approximation gives insight into the phononic properties of a compound, but in the established way, i.e. density functional theory based methods, it takes many calculation steps and consumes a lot of resources to arrive at the desired results. Machine learning (ML) trained interatomic potentials (e.g. Gaussian approximation potential, GAP) pose an alternative to the traditional computation way of phonons. We develop a Python code based workflow which combines automation tools like atomate2 with ML to ease providing interactomic potentials for (quantum chemical) computations and databases. T2 - #RSCPoster Twitter conference 2023 CY - Online meeting DA - 28.02.2023 KW - Interatomic potentials KW - Machine learning KW - Phonons KW - Workflow PY - 2023 UR - https://twitter.com/cer5814012/status/1630547004462858240 AN - OPUS4-57059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fink, Friedrich A1 - Falkenhagen, Jana A1 - Emmerling, Franziska T1 - Mechanochemical valorisation of kraft-lignin N2 - As one of nature's largest carbon sources with an annual production of around 20 billion tonnes, lignin is the third most abundant biopolymer on the planet. It becomes available as technical lignin, which is produced as a by-product in the pulp and paper industry and in smaller quantities in second generation biofuel refineries. Current estimates suggest that less than 10% of all technical lignin is reused. The high polydispersity, complex heterogeneous structure and uncertain reactivity are the major limiting factors for further processing. The most common applications for various technical lignins without extensive modifications are for example: Surface active substances, additives in bitumen, cement and animal feed. One way to make lignin usable is to break the structure into oligomer units and thus reduce the polydispersity and average molar mass. In addition, it is advantageous to introduce new functionalities such as hydroxyl or carbonyl groups when splitting the high-molecular-weight (HMW) fractions, or to convert existing functionalities. In this study, a mechanochemical method is presented that can degrade and modify technical kraft lignin by means of sodium percarbonate (SPC). T2 - 10th Intern. Symp. on the Separation and Characterisation of Natural and Synthetic Macromolecules (SCM-10) CY - Amsterdam, Netherlands DA - 01.02.2023 KW - Technical Lignin KW - Mechanochemical oxidation PY - 2023 AN - OPUS4-57001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz A1 - Scoppola, E. A1 - Kochovski, Z. A1 - Retzmann, Anika A1 - Emmerling, Franziska T1 - Crystallization study of transition metal phosphates: Characterization of a non-classical crystallization pathway N2 - Industrial and agricultural waste streams (waste waters, sludges, tailings etc.), which contain high concentrations of NH4+, PO43- and transition metals, are environmentally harmful due to their toxic pollutants. At the same time, phosphorus and selective transition metals such as Cobalt could be potentially depleted as a critical raw material due to the high demand and rapidly declining natural ore deposits. Therefore, due to simultaneous scarcity and abundance, the phosphorus and 3d metal recovery from agricultural, industrial, mining, or urban wastewaters have been an important factor in sustaining our global consumption and preservation of the natural environment. Typically, separate pathways have been considered to extract hazardous substances such as transition metals or phosphate, independently from each other. Here, we investigate the crystallization of transition metal phosphate (TMP) compounds (NH4MPO4∙6H2O, M3(PO4)2∙8H2O with M = Ni2+, Co2+, NixCo1-x2+ M-struvite and M-phosphate octahydrate) out of aqueous solutions, which allow for P, ammonia and metal co-precipitation. The precipitation of these compounds from industrial and agricultural waste waters has high potential as a P- and 3d metal recovery route. For this purpose, a detailed understanding of the crystallization process beginning from combination of solved ions and ending in a final crystalline product is required. Through adjusting the reaction conditions, the stability, crystallite size and morphology of the as-obtained TMPs could be controlled. Detailed investigations of the precipitation process in time using ex- and in-situ techniques provided new insights into their non-classical crystallization mechanism/crystal engineering of these materials. These TMPs involve transitional colloidal nanophases during the crystallization process. Over time, their complex amorphous framework changes significantly resulting simultaneously in an agglomeration and densification of the compound. After extended reaction times these colloidal nanophases condensed to a final crystal. However, the reaction kinetics of the formation of a final crystalline product and the lifetime of these intermediate phases vary significantly depending on the metal cation involved in the precipitation process. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P)-ratios, whereas Co tends to form Co-struvite and/or Co-phosphate octahydrate depending on the (M/P)-ratio. The mixed NixCo1-x system shows a significantly different crystallization behavior and reaction kinetics of the precipitation compared to the pure endmembers. The observed various degree of stability could be linked to the octahedral metal coordination environment in these compounds. The achieved level of control over the precipitates, is highly desirable for 3d- and P-recovery methods. Under this paradigm, the crystals can be potentially upcycled as precursor materials for (electro)catalytical applications. T2 - HZB Usermeeting 2023 CY - Berlin, Germany DA - 22.06.2023 KW - Struvite KW - Transition metal KW - Phosphates KW - Crystallization KW - Amorphous phases PY - 2023 AN - OPUS4-57775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Amariamir, Sasan A1 - Benner, Philipp A1 - George, Janine T1 - Prediction of materials synthesizability N2 - In the pursuit of discovering materials with desirable properties, extending the available material libraries is crucial. High-throughput simulations have become an integral part in designing new materials in the past decades. However, there is no straightforward way of distinguishing synthesizable materials from all the proposed candidates. This project focuses on employing AI-driven methods to estimate synthesizability of materials. Up to now, material scientists and engineers have relied on domain knowledge as well as empirical heuristics to guess the stability and synthesizability of molecules and crystals. The famous Pauling rules of crystal stability are an example of such heuristics. However, after the accelerating material discovery in all the years since Pauling, these rules now fail to account for the stability of most known crystals. A new predictive set of heuristics for crystal stability/synthesizability is unlikely to be uncovered by human perception, given the magnitude and dimensionality of crystallographic data. Hence, a data-driven approach should be proposed to find a predictive model or set of heuristics which differentiate synthesizable crystal structures from the rest. The main challenge of this research problem is the lack of a negative set for classification. Here, there are two classes of data: the positive class which contains synthesizable materials and the negative class which contains materials which are not synthesizable. While the data from the positive class is simply the data of crystals which have been experimentally synthesized, we do not have access to data points which are certainly unsynthesizable. Strictly speaking, if an attempt of synthesizing a crystal fails, it does not necessarily follow that the crystal is not synthesizable. Also, there is no database available which contains the intended crystal structures of unsuccessful synthesis attempts. This project proposes a semi-supervised learning scheme to predict crystal synthesizability. The ML model is trained on experimental and theoretical crystal data. The initial featurization focuses on local environments which is inspired by the Pauling Rules. The experimental data points are downloaded through the Pymatgen API from the Materials Project database which contains relaxed structures recorded in Inorganic Crystal Structure Database – ICSD. The theoretical data is queried from select databases accessible through the Optimade project’s API. T2 - MSE Congress 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Synthesizability KW - PU Learning KW - Cheminformatics PY - 2022 AN - OPUS4-56731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Kannengießer, Thomas T1 - Component test for the assessment of hydrogen assisted cracking susceptibility of thick-walled submerged arc welded offshore steels N2 - Offshore wind turbines (OWT) are a key factor of the sustainable energy generation of tomorrow. The continuously increasing installation depths and weight of the OWTs require suitable foundation concepts like monopiles or tripods. Typically, mild steels like the S420ML are used with plate thicknesses up to several hundreds of mm causing high restraints in the weld joints. Due to the large plate thickness, submerged arc welding (SAW) with multiple wires is the state-of-the-art welding procedure. As a result of the very high stiffness of the construction, a certain susceptibility for time-delayed hydrogen-assisted cracking (HAC) may occur. The evaluation of crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e., workshop) scale. The investigated mock-up, weighing 350 kg, comprised heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated via the use of welding fluxes in dry (HD < 5 ml/100g Fe) and moisture condition (HD > 15 ml/100g Fe). The residual stresses were determined by a robot X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and heat affected zone. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and welding parameters. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Component test KW - NDT KW - Waiting time PY - 2023 AN - OPUS4-58672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Gogula, S. A1 - Kilo, M. A1 - Reinsch, Stefan A1 - Bornhöft, H. A1 - Müller, Ralf A1 - Deubener, J. A1 - Limbach, R. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Diegeler, A. A1 - Pan, Z. T1 - GlasDigital N2 - Der aktuelle Stand des MateriaDigital1 Projektes GlasDigital wird vorgestellt. Hierbei wird allgemein die Problem- und Zielstellung präsentiert, als auch auf 2 separaten Postern die Ergebnisse. Diese beinhalten zum Einen die smarte Gestaltung der robotergestützten Glasschmelzanlage der BAM inkl. Analytik und zum Anderen die Digitalisierungsbestrebungen im Bereich Glas, d.h. ML-gestützte C-S-P-Simulation, Ontologie für den Werkstoff Glas, Digitaler Zwilling des Gießprozesses. T2 - PMD Vollversammlung 2023 CY - Karlsruhe, Germany DA - 21.09.2023 KW - GlasDigital KW - Ontologie KW - Bildanalyse KW - Simulation KW - Roboter KW - Digitalisierung PY - 2023 AN - OPUS4-58734 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stohl, Leonie A1 - von Werder, Julia T1 - Bioreceptivity of structured concrete panels N2 - Understanding the fundamentals of bioreceptivity enables the developement of functionalized materials. Concrete as the most used building material worldwide is of special interest as microbially greened panels may represent an alternative to classic façade greening with plants. � This project includes extensive outdoor experiments, in which eight differently structured concrete panels are weathered under different conditions, aiming to grow a stable biofilm of photosynthetic eukaryotic organisms. Documentation and data analysis of this experiment will be demonstrated using an example of one of the surfaces. T2 - Word Green Infrastructure Congress 2023 CY - Berlin, Germany DA - 27.06.2023 KW - Bioreceptivity KW - Concrete KW - Material design PY - 2023 AN - OPUS4-57919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Hammerschmidt, T. A1 - Gedsun, A. A1 - Forti, M. A1 - Olbricht, Jürgen A1 - Stotzka, R. A1 - Skrotzki, Birgit A1 - Shakeel, Y. A1 - Hunke, S. A1 - Tsybenko, H. A1 - Aversa, R. A1 - Chmielowski, M. A1 - Hickel, T. T1 - IUC02 Framework for Curation and Distribution of Reference Datasets using Creep Data of Ni-Base Superalloys as an Example N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Syngle Crystal alloy KW - Creep KW - Metadata schema PY - 2023 AN - OPUS4-57923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zekhnini, Khalid A1 - Ebell, Gino A1 - Burkert, Andreas T1 - Corrosion at metallic offshore constructions – Bundesanstalt für Materialforschung und -prüfung (BAM) N2 - In the maritime context of offshore operation, corrosion, in combination with the materials used, poses a particular challenge to ensure safe operation over long indefinite periods and to minimise susceptibility to failure. Until today, only a few corrosion protection systems have proven themselves for the interaction of efficiency, installation, and maintenance in the offshore sector. In addition, available corrosion test methods sometimes have major deficits about conclusions of the durability. Therefore, there is more research and development needed. The flagship project H2Mare of the Federal Ministry of Education and Research aims to enable the production of green hydrogen and PtX products at high seas. Research is being driven forward by the partners in four individual projects, where BAM is involved in two. In PtX-Wind, major kinds of corrosion attacks at offshore constructions are characterized and investigated, and suitable corrosion protection measures determined. In TransferWind, attention focusses on transferring scientific results into standardization. This poster at the H2Mare Conference 2023 presents an overview of the investigation methods and contribution of the department “Corrosion and Corrosion Protection”. T2 - H2Mare Conference 2023 CY - Frankfurt/Main, Germany DA - 12.06.2023 KW - Atmospheric Corrosion KW - Sea Water KW - Corrosion Testing KW - Offshore KW - Laboratory Container KW - Corrosion protecting system PY - 2023 AN - OPUS4-57838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bauer, L. A1 - Wieder, Frank A1 - Truong, V. A1 - Förste, F. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Praetz, S. A1 - Schlesiger, C. A1 - Kanngießer, B. A1 - Zaslansky, P. A1 - Mantouvalou, I. T1 - Complementary X-ray techniques reveal hidden details in dental materials N2 - In dentistry it is of great interest to achieve good sealing interzones between tooth tissue and restoration materials to avoid, e. g. secondary caries. μXRF and CμXRF are suitable to investigate the elemental composition at these interzones in respect to diffusion of elements. Synchrotron X-ray refraction radiography (SXRR) and μCT measurements deliver highly resolved structural information and make structural changes such as micro cracks within the filling and the tooth tissue visible. The presented measurements are part of the DFG funded project IXdent (Integrative X-ray techniques for chemical and structural characterizations of dental interzones.) The depth-resolved CμXRF measurements are affected by absorption effects, making a quantitative investigation of the interzone in depth difficult. Full 3D quantification of heterogenous samples requires a complete model including dark matrix and density for each voxel. The combination of different techniques paves the way for a quantitative analysis of dental interzones. T2 - 15th BESSY@HZB User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - X-ray refraction KW - X-ray fluorescence KW - Computed tomography KW - Dental material PY - 2023 AN - OPUS4-57849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertural, Christina A1 - Deringer, V. L. A1 - George, Janine T1 - Automation of machine learning driven interatomic potential generation for predicting vibrational properties N2 - Investigating the phononic properties is beneficial for predicting low thermal conductivity thermoelectric materials.1–3 Employing density functional theory4 takes many calculation steps and consumes a lot of computational resources.5,6 Using machine learning driven interatomic potentials (MLIP, e.g., Gaussian approximation potential,8 GAP) opens up a faster route to phonons7 but in most cases, the potentials are specifically tailored for a certain compound. In this work, we automate the generation of such MLIPs in a Python code-based workflow, based on the automation tools atomate29 and pymatgen10 which combines the automatic DFT computations with the automated fitting of GAPs. Automation enables easier testing, benchmarking and validation.11 We aim to provide the workflow-generated potentials for storage in databases. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Interatomic potentials KW - Machine learning KW - Phonons KW - Thermoelectrics PY - 2023 AN - OPUS4-57932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bustamante, Joana A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Ueltzen, Katharina A1 - George, Janine T1 - Thermodynamic and Thermoelectric Properties of the Canfieldite, (Ag8SnS6 ), in the Quasi-Harmonic Approximation N2 - Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties.One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, a new low-temperature (LT) phase transition of canfieldite at 120K has been found. Here, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Thermal properties such as the constant-pressure heat capacity (Cp) and thermal conductivity are very close to experimental measurements. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with argyrodites analogues, Ag8XS6 (X = Sn, Si, Ge), to arrive at an improved T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Thermoelectric materials KW - DFT KW - QHA KW - Grüneisen parameter PY - 2023 AN - OPUS4-57887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials N2 - Understanding the chemistry and nature of individual chemical bonds is essential for materials design. Bonding analysis via the LOBSTER software package has provided valuable insights into the properties of materials for thermoelectric and catalysis applications. Thus, the data generated from bonding analysis becomes an invaluable asset that could be utilized as features in large-scale data analysis and machine learning of material properties. However, no systematic studies exist that conducted high-throughput materials simulations to curate and validate bonding data obtained from LOBSTER. Here we present an approach to constructing such a large database consisting of quantum-chemical bonding information. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 AN - OPUS4-57889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matiushkina, Anna A1 - Litvinov, I. A1 - Bazhenova, A. A1 - Belyaeva, T. A1 - Dubavik, A. A1 - Veniaminov, A. A1 - Maslov, V. A1 - Kornilova, E. A1 - Orlova, A. A1 - Tavernaro, Isabella A1 - Andresen, Elina A1 - Prinz, Carsten A1 - Resch-Genger, Ute T1 - Synthesis and physical properties studies of bifunctional nanocomposites N2 - At present, the field of research on nanostructures is actively developing, which is due to their unique physico-chemical properties compared to bulk materials. Many research activities are focused on obtaining nanocomposites, which combine various types of nanostructures with different properties and function. For example, the development of magneto-luminescent nanocomposites makes it possible to use their luminescence for optical imaging, and their magnetic properties for magnetic targeted delivery and as agents of hyperthermia and magnetic resonance imaging. My master studies as part of the project Goszadanie 2019-1080 at ITMO were focused on the investigation of nanocomposites, consisting of semiconductor quantum dots (QDs) as luminescent component and superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic one, in solution and during their incubation with HeLa cells. The spectrally resolved analysis of the QD photoluminescence (PL) kinetics of the free QDs and the QDs incorporated in these nanocomposites undergoing energy transfer processes allowed for (1) understanding the reasons for the quenching of QD luminescence in cells, (2) evaluating the average distance between the QDs and, based on this, concluding the degree of QD aggregation in cells, and (3) drawing conclusions about the QD-quencher composites integrity in cells. Overall, the analysis of the PL kinetics confirmed that QDs and SPIONs remain bound in the obtained nanocomposites during incubation with cells. To ensure the successful advancement of nanomaterials in biomedicine and the transition from their laboratory preparation and studies to their use in different applications and in industry, it is crucial to develop reliable measurement methods and reference materials candidates for the characterization of functional nanomaterials and assessing the quality of the obtained nanostructures. My recently started project at BAM, which is part of the EU metrology project MeTrINo, will be devoted to this topic. There we will focus on the development of methodologies for the synthesis and characterization of iron oxide nanoparticles, already used in biomedicine, and multi-element lanthanide-based nanoparticles with attractive upconversion luminescence, as reference materials with high monodispersity and reproducibility. Also, these nanoparticles will be functionalized with organic dyes for optical imaging and, probably, the study of the energy transfer phenomena. T2 - Bad Honnef Summer School CY - Bad Honnef, Germany DA - 30.07.2023 KW - Quantum dots KW - Iron oxide nanoparticles KW - Upconversion nanoparticles PY - 2023 AN - OPUS4-58075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Osipova, Viktoriia A1 - Tavernaro, Isabella A1 - Prinz, Carsten A1 - Langhammer, N. A1 - Heinze, K. A1 - Resch-Genger, Ute T1 - Incorporation of near-infrared light emitting chromium (III) complexes into the core and shell of silica nanoparticles and optimisation of their optical properties N2 - In recent years, chromium (III) complexes have received a lot of attention as novel near-infrared (NIR) emitters. This interest was triggered by the report on the first molecular ruby Cr(ddpd)2(BF4)3 with a high photoluminescence quantum yield of 13.7% of its near infrared (NIR) emission band and a long luminescence lifetime of 1.122 ms at room temperature. Meanwhile, the influence of triplet oxygen, temperature, and pressure on the optical properties of different molecular rubies have been assessed. These features make these molecular rubies promising candidates for multi-analyte optical sensing applications and the generation of singlet oxygen for photocatalysis and photodynamic therapy. However, in an oxygen-containing environment, the photoluminescence quantum yields and luminescence lifetimes of these chromium(III) complexes show only very small values. This hampers their application as NIR luminescence labels. This application, that cannot be tackled by conventional deoxygenating approaches, requires suitable strategies to protect the luminescence of the chromium(III) complexes from oxygen quenching. Typical approaches to reduce the oxygen sensitivity of long-lived luminophores include the encapsulation into an oxygen-shielding matrix or less commonly employed, by tuning the bulkiness of the ligands for oxygen-sensitive coordination compounds. An elegant approach to reduce the undesired luminescence quenching by triplet oxygen explored by us presents the incorporation of these chromium(III) complexes into amorphous, non-porous silica nanoparticles, that can be simply surface functionalized, e.g., with targeting ligands and/or other sensor molecules. This can enable the use of such chromium(III) complexes as reporters for bioanalytical assays and bioimaging without the need to introduce reactive groups into the ligands and can pave the road to lifetime tuning. In this work, as first proof-of-concept experiments, a set of chromium (III) complexes constituting of different ligands and counter anions, were embedded into the core of silica nanoparticles. As an alternative synthesis strategy, selected complexes were incorporated into a silica shell formed around the core of self-made silica nanoparticles. Subsequently, the optical properties of the resulting luminescent silica nanoparticles were spectroscopically assessed by steady state and time-resolved luminescence spectroscopy. First results of time-resolved luminescence measurements of the Cr(ddpd)2(PF6)3 complex incorporated into 25nm large silica nanoparticles dispersed in aerated water in comparison to the decay kinetics obtained for this complex in acetonitrile in air showed an increase in lifetime from 46 µs to 1147 µs. This confirming our design concept of nanoscale NIR emissive Cr(III) reporters. T2 - Bad Honnef summer school CY - Bad Honnef, Germany DA - 30.07.2023 KW - Chromium (III) complexes KW - Silica Nanoparticles KW - Luminescence lifetime measurments PY - 2023 AN - OPUS4-58076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, H. A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Sack, H. T1 - PMDco - Platform MaterialDigital Core Ontology: Achieving High-Quality & Reliable FAIR Data N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this poster presentation, an approach how to maintain a comprehensive and intuitive MSE-centric terminology composing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures is shown. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - DVM Arbeitskreis Betriebsfestigkeit - Potenziale der Betriebsfestigkeit in Zeiten des technologischen und gesellschaftlichen Wandels CY - Munich, Germany DA - 11.10.2023 KW - Digitalization KW - Semantic Web Technologies KW - FAIR KW - Data Interoperability KW - PMD Core Ontology PY - 2023 AN - OPUS4-58602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Lewis-acidic Zr fluoride catalyst N2 - The Kemnitz et al. developed a fluorolytic route to access metal fluorides 1 such as AlF3 2 and MgF2 3 which possess a high surface area. In aluminium-based systems, the synthetic approach led to amorphous xerogels that can be further converted into Lewis superacids.2 Still, despite zirconium oxide being described as a stronger Lewis acid than other metal oxides4 zirconium fluoride-based materials have only recently been reported or investigated. In this work we extend the class of amorphous Lewis acidic heterogeneous catalysts to an amorphous ZrF4 that is active in C-F bond activation. T2 - CRC 1349 Summer School 2023 CY - Berlin, Germany DA - 28.08.2023 KW - ZrF4 KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2023 AN - OPUS4-58638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Serrano Munoz, Itziar A1 - Laquai, René A1 - Bruno, Giovanni T1 - Röntgenrefraktionstechnik - Charakterisierung von Keramiken und Verbundwerkstoffen N2 - Die Brechung von Röntgenstrahlen (Röntgenrefraktion) an Grenzflächen zwischen Materialien unterschiedlicher Dichte ist analog zur Ablenkung von sichtbarem Licht an z.B. Glasoberflächen. Es gibt jedoch zwei wesentliche Unterschiede: a) konvexe Grenzflächen verursachen Divergenz (d.h. der Brechungsindex n ist kleiner als 1), und b) die Ablenkungswinkel sind sehr klein, und reichen von einigen Bogensekunden bis zu einigen Bogenminuten (d.h. n ist nahe bei 1); Wie auch bei sichtbarem Licht ist die Ablenkungsrichtung der Röntgenstrahlen abhängig von der Orientierung der durchstrahlten Grenzfläche. Aufgrund dieser Eigenschaften eignen sich Röntgenrefraktionsmethoden hervorragend für: a) die Erkennung und Quantifizierung von Defekten wie Poren und Mikrorissen und b) die Bewertung von Porosität und Partikeleigenschaften wie Orientierung, Größe und räumliche Verteilung. Wir zeigen die Anwendung der Röntgenrefraktionsradiographie (2,5D Technik) und der -tomographie (3D Technik) für die Untersuchung verschiedener Probleme in der Werkstoffwissenschaft und -technologie: a) Sintern von SiC-Grünkörpern b) Porositätsanalyse in Dieselpartikelfiltersilikaten c) Faser-Matrix-Haftung in Metall- und Polymermatrixverbundwerkstoffen d) Mikrorissbildung in Glaskeramik. Wir zeigen, dass der Einsatz von Röntgenrefraktionsmethoden quantitative Ergebnisse liefert, die direkt als Parameter in Werkstoffmodellen verwendet werden können. T2 - DACH-Jahrestagung 2023 CY - Friedrichshafen, Germany DA - 15.05.2023 KW - Röntgen-Refraktion KW - Verbundwerkstoffe KW - Keramik PY - 2023 AN - OPUS4-57615 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cios, Grzegorz A1 - Hodoroaba, Vasile-Dan A1 - Tokarski, T. A1 - Bala, P. T1 - High throughput nanoparticle analysis using transmission Kikuchi diffraction N2 - In the present paper we show an approach of measuring large numbers of nanoparticles in a single scan TKD. TiO2 anatase nanoparticles (NP) of bipyramidal shape were deposited on standard carbon grid used for TEM. The procedure used promoted formation of NP ‘monolayer’ islands with uniform distribution of NPs on the carbon surface which allowed mapping of large number of nanoparticles in the single island. Collection of whole map covering ~2800 nanoparticles took nearly 20 minutes. Inverse pole figure color coded map indicates that the NPs are either lying on a {101} facet (within 10° range around perfect {101} parallel to the carbon surface orientation) on the carbon film or are lying on a {100} facet (within 10° range around the perfect {100} parallel to the carbon surface orientation). Very unlikely was the NP orientation standing on a {001} face. The NPs size distribution described as equivalent circle diameter (ECD) has been also evaluated and the mean NP ECD was 59 nm with standard deviation of 15 nm, i.e. in good agreement with electron microscopy or AFM results. This study shows high potential of the technique for crystalline NPs analysis with respect to geometrical orientation of the particles on the substrate. With known orientation, the 3D dimensional characterisation of such non-spherical NPs becomes possible from 2D projection electron micrographs. Moreover, the NP size distribution can be easily extracted. Superior accuracies down to 1-2 nm are achievable. The approach is applicable also on thin lamellae extracted from particulate (or mesoporous) layers. T2 - EMAS 2023 - 17th European Workshop on Modern Developmennts and Applications in Microbeam Analysis CY - Krakow, Poland DA - 07.05.2023 KW - Nanoparticles KW - TKD KW - Electron microscopy KW - TiO2 KW - Orientation PY - 2023 UR - https://www.microbeamanalysis.eu/events/event/60-emas-2023-17th-european-workshop-on-modern-developments-and-applications-in-microbeam-analysis AN - OPUS4-57519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bustamante, Joana A1 - Naik, Aakash Ashok A1 - Ueltzen, Katharina A1 - Ertural, Christina A1 - George, Janine T1 - Thermodynamic and Thermoelectric Properties of the Canfieldite, (Ag8SnS6 ), in the Quasi-Harmonic Approximation N2 - Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties. One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, Slade group found a new low-temperature (LT) phase transition of canfieldite at 120K. Therefore, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density-functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Lattice parameters were overestimated by 2%, and thermal properties such as the constant-pressure heat capacity Cp are very close to experimental measurements. Our simulations also reveal a possible new phase transition at around 312 K. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with some argyrodites analogues, Ag8TS6 (T = Si, Ge, Ti and Sn), finding a relationship between the anharmonicity and low thermal conductivity. T2 - TDEP Summer School 2023 (TDEP2023: Finite-temperature and anharmonic response properties of solids in theory and practice) CY - Linköping, Sweden DA - 20.08.2023 KW - Thermoelectric materials KW - DFT KW - QHA KW - Grüneisen parameter PY - 2023 AN - OPUS4-58147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Omar, Hassan A1 - Gawek, Marcel A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Determining thermal transitions in thin polymer layers by means of spectroscopic ellipsometry N2 - Thin polymer layers have enormous technical significance as polymer coatings on materials are very cost-effective for tailoring properties of surfaces. Apart from technical aspects in their use, thin polymer layers can be used to determine dimensional aspects in properties of material, such as confinement effects. In this work, we investigated several different polymer layer materials and determined their glass transition region by means of temperature-dependent spectroscopic ellipsometry. We have optimised our fitting procedure of the ellipsometric data produced in temperature ramp experiments. By this, we could measure the dependence of Tg on the layer thickness in a wide variety of thickness values, proving the existence of confinement effects in the investigated systems. We compare numerical methods for determining the location of the glass transition and discuss the possibilities of different analysis methods when determining thermal transitions. We also discuss the simultaneous existence of these transitions and annealing effects and the implications on the accuracy of the determined data. T2 - 12th Workshop Ellipsometry 2023 CY - Prague, Czech Republic DA - 18.09.2023 KW - Thin Films KW - Polymers KW - Ellipsometry KW - Themal Transitions PY - 2023 AN - OPUS4-58413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Maaß, Robert A1 - Müller, Ralf T1 - Glass fracture surface energy calculated from crystal structure and bond-energy data N2 - Enhancing the fracture toughness is still one of the major challenges in the field of oxide glasses. To screen different glass systems for promising candidates, a theoretical expression for the fracture surface energy, G, linked to the fracture toughness, KIc, is thus of interest. Extending our earlier work on nucleation and surface energies [1], we present a simple approach for predicting the fracture surface energy of oxide glasses, G using readily available crystallographic structure data and diatomic bond energies. The proposed method assumes that G of glass equals the surface fracture energy of the weakest fracture (cleavage) plane of the isochemical crystal. For non-isochemically crystallizing glasses, an average G is calculated from the weighed fracture energy data of the constitutional crystal phases according to Conradt [2]. Our predictions yield good agreement with the glass density- and chemical bond energy-based prediction model of Rouxel [3] and with experimentally obtained G values known at present. [1] C. Tielemann, S. Reinsch, R. Maass, J. Deubener, R. Müller, J. Non-Cryst. Solids 2022, 14, 100093 [2] R. Conradt, J. Non-Cryst. Solids 2004, 345-346, 16 [3] R., Tanguy, Scripta Materialia 2017, 109-13, 137 T2 - DPG Spring Meeting of the Condensed Matter Section CY - Dresden, Germany DA - 26.03.2023 KW - Fracture Toughness KW - Oxide Glasses KW - Surface Energy PY - 2023 AN - OPUS4-58414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Hübler, Daniela A1 - Börner, Andreas A1 - Kannengießer, Thomas T1 - Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted finishing milling N2 - The resources of niobium exceed the ones of tungsten by an order of magnitude. With 92%, Brazil is today the main global producer of niobium. Hence, niobium carbides (NbC) are a sustainable and economic alternative to conventionally used cutting materials, especially tungsten carbides (WC). Moreover, NbC can be used in Ni alloy matrix and thus offer significant advantages by substituting WC in Co matrix as cutting materials in terms of health risks and raw material price and supply risk. Based on recent studies which found an increased performance of NbC compared to WC cutting tools in machining higher strength steels, the composition NbC12Ni4Mo4VC was chosen for finish machining of a high-strength steel S960QL in this study. The experiments were carried out on an ultrasonic-assisted 5-axis milling machine using NbC tools specially made to benchmark them with commercially available coated WC cutting inserts. In addition, the influence of a coating system for the NbC inserts is tested and evaluated for its performance in the cutting process. Tool wear and cutting force analyses are implied to identify optimal parameter combinations as well as tool properties for the novel NbC tool. Together with the oscillation of ultrasonic-assisted milling, the loads on the component surface and the tool can be reduced and the wear behavior of the novel NbC tool can be refined. These milling tests are accompanied by standardized wear tests, i.e., pin-on-disc, between the aforementioned material combinations, and the results are correlated with each other. Finally, the behavior when using hard-to-cut materials such as Ni alloys, or innovative materials such as iron aluminide is also being tested, as these are constantly in the focus of machining optimization. With this strategy, comprehensive knowledge is achievable for future efficient application of NbC for milling tools, which have already been researched for decades using WC. T2 - 24th International Conference on Wear of Materials CY - Banff, Canada DA - 16.04.2023 KW - Cutting tool KW - Niobium carbide KW - Tool wear KW - Ultrasonic-assisted milling PY - 2023 AN - OPUS4-59258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kannengießer, Thomas T1 - Minimization of tool wear in milling of iron aluminides using ultrasonic-assisted process N2 - Presentation of key results from the ZIM cooperation project "TEWUFEAL" on tool development for ultrasonic-assisted milling of iron aluminide alloys cast in gravity die casting. T2 - 24th International Conference on Wear of Materials CY - Banff, Canada DA - 16.04.2023 KW - Iron aluminides KW - Ultrasonic-assisted milling KW - Surface integrity KW - Tool wear PY - 2023 AN - OPUS4-59259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar A1 - Ulbricht, Alexander A1 - Gardei, André T1 - Classic Materials Testing in the Light of CT N2 - Currently, mandatory requirements and recommendations for the detection of irregularities in laser beam welded joints are based on classic micrographs as set out in the standard ISO 13919-1:2019. Compared to classic micrographs, computed tomography enables a non-destructive, three-dimensional and material-independent mode of operation, which delivers much more profound results. Even in building material testing, methods with limited informative value can be checked and supplemented by CT examinations. T2 - 13th International Conference on Industrial Computed Tomography (iCT2024) CY - Wels, Austria DA - 06.02.2024 KW - Computed Tomography KW - Additive Manufacturing KW - Machine-Learning Segmentation KW - Air Void System PY - 2024 AN - OPUS4-59568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krenzer, Julius A1 - Mueller, Thomas A1 - El Abbassi, Abdelouahad A1 - Resch-Genger, Ute A1 - Petrov, Eugene T1 - Aroyl-S,N-ketene acetal based bichromophores exhibiting energy transfer and aggregation induced (dual) emission N2 - A series of aroyl-S,N-ketene acetal based bichromophores is readily synthesized by Buchwald-Hartwig amination and Ullmann reaction in moderate to good yields. The aminated aroyl-S,N-ketene acetals are emissive in the solid state and in the aggregate, but not in solution, thus, they are AIEgens (aggregation induced emission chromogens). Aggregation is induced by fractional alternation of the solvent mixture, here by increasing the water fraction of ethanol/water mixtures. For most derivatives, the emission upon induced aggregation stems solely from the aroyl-S,N-ketene acetal chromophore, regardless whether excitation occurs at the absorption maximum of the triarylamine or the aroyl-S,N-ketene acetal. Therefore, a pronounced energy transfer from the triarylamine donor to the aroyl-S,N-ketene acetal acceptor can be inferred. The color of the emission can be controlled by choosing the para-aroyl substituent. A partial energy transfer could also be observed for some bichromophores, leading to aggregation-induced dual emission (AIDE). In addition, four examples of aminated diaroyl-S,N-ketene acetals were added to the compound library. The electron-withdrawing properties of the additional aroyl group provide a bathochromic shift of the emission band of the aroyl-S,N-ketene acetal. These bichromophores also show AIDE and in one case even aggregation-induced white light emission as a result of additive color mixing. T2 - Beilstein Symposium on pi-Conjugated Molecules and Materials CY - Limburg, Germany DA - 07.11.2023 KW - aggregation-induced dual emission (AIDE) PY - 2023 AN - OPUS4-59006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casali, Lucia A1 - Emmerling, Franziska T1 - Use of the solvent-free mechanochemical method for a sustainable preparation of pharmaceuticals N2 - With the growing interest in environmental issues on the part of governments and institutions, pharmaceutical industries are asked to reduce their environmental footprint. Given the major impact related to the use of solvents, the development of methodologies less solvent demanding is nowadays even more urgent. In light of that, mechanochemistry would be a suitable solvent-free technology since it promotes the activation of the chemical reactions between (generally) solid materials via inputs of mechanical energy. Since such reactions may occur outside the kinetic and thermodynamic rules of conventional solution chemistry, the main limit of mechanochemistry is the poor mechanistic understanding of the solid-state transformations involved, which is still hindering a widespread use of the method, as well a scale-up to the industrial level. However, the development of methods for real-time monitoring of the mechanochemical reactions enables obtaining (in)accessible information on reaction intermediates, new products, or reaction time, thus getting closer to a better understanding of the mechanistic behaviour. With the rules of this chemistry becoming increasingly clear, the new reaction pathways of mechanochemistry wouldn’t represent a limit anymore, but an asset, that may lead to lot of opportunities for the pharmaceutical industry. T2 - Post Doc Day Berlin CY - Berlin, Germany DA - 02.11.2023 KW - Mechanochemistry KW - Sustainability KW - Pharmaceuticals PY - 2023 AN - OPUS4-59010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -