TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding with geometrical and quantum-chemical bonding analysis N2 - Chemical bonding and coordination environments are crucial descriptors of material properties. They have previously been applied to creating chemical design guidelines and chemical heuristics. They are currently being used as features in machine learning more and more frequently. I will discuss implementations and algorithms (ChemEnv and LobsterEnv) for identifying these coordination environments based on geometrical characteristics and chemical bond quantum chemical analysis. I'll demonstrate how these techniques helped in testing chemical heuristics like the Pauling rule and thereby improved our understanding of chemistry. I'll also show how these tools can be used to create new design guidelines and a new understanding of chemistry. To use quantum-chemical bonding analysis on a large-scale and for machine-learning approaches, fully automatic workflows and analysis tools have been developed. After presenting the capabilities of these tools, I will also point out how these developments relate to the general trend towards automation in the field of density functional based materials science. T2 - ICAMS Interdisciplinary Centre for Advanced Materials Simulation Seminar Series CY - Online meeting DA - 24.11.2022 KW - Automation KW - High-throughput KW - Machine learning KW - Materials informatics KW - Bonding Analysis PY - 2022 AN - OPUS4-56417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - New chemical understanding with the help of automation and highthroughput computations N2 - High-throughput computations are nowadays an established way to suggest new candidate materials for applications to experimentalists. Due to new packages for automation and access to databases of computed materials properties, these studies became more and more complex over the last years. Besides suggesting new candidate materials for applications, they also offer a way to understanding the materials properties based on chemical bonds. For example, we have recently used orbital-based bonding analysis to understand the results of high-throughput studies for spintronic materials, ferroelectric materials and photovoltaic materials in detail. To do so, we have developed Python tools for high-throughput bonding analysis with the programs VASP and Lobster (see www.cohp.de). They are based on the Python packages pymatgen, atomate, and custodian. This implementation will be discussed within the talk. We also expect that these tools offer possibilities to arrive at new descriptors based on chemical bonds for materials properties. T2 - High-throughput workflows for materials science with the Atomic Simulation Environment (ASE) and Fireworks CY - Lyngby, Denmark DA - 15. November 2021 KW - Automation KW - High-throughput computations KW - DFT PY - 2021 AN - OPUS4-53840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine A1 - Naik, Aakash Ashok A1 - Jackson, A. J. A1 - Baird, S. T1 - Scripts to reproduce "Automated bonding analysis with crystal orbital Hamilton populations" N2 - This repo allows to recreate our publication: https://doi.org/10.1002/cplu.202200123 In contrast to 0.2.2, we fixed an issue with absolute path. KW - Automation KW - High-throughput computations KW - Bonding analysis PY - 2022 UR - https://github.com/JaGeo/LobsterAutomation UR - https://doi.org/10.5281/zenodo.6421928 UR - https://doi.org/10.5281/zenodo.6595062 UR - https://doi.org/10.5281/zenodo.6599556 UR - https://doi.org/10.5281/zenodo.6674670 UR - https://doi.org/10.5281/zenodo.6704163 DO - https://doi.org/10.5281/zenodo.6421927 PB - Zenodo CY - Geneva AN - OPUS4-55177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine T1 - DFT-based Phonon-computations for "Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity" N2 - These are the harmonic phonon and Grüneisen parameter computations for the publication "Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity" (https://doi.org/10.1002/aenm.202200717). VASP and Phonopy outputs are included in this data set. KW - Thermal conductivity KW - Phonons PY - 2021 DO - https://doi.org/10.5281/zenodo.5116360 PB - Zenodo CY - Geneva AN - OPUS4-55168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp T1 - A Quantum-Chemical Bonding Database for Solid-State Materials N2 - A deep insight into the chemistry and nature of individual chemical bonds is essential for understanding materials. Bonding analysis is expected to provide important features for large-scale data analysis and machine learning of material properties. Such information on chemical bonds can be calculated using the LOBSTER (www.cohp.de) software package, which post-processes data from modern density functional theory computations by projecting plane wave-based wave functions onto a local atomic orbital basis. We have performed bonding analysis on 1520 compounds (insulators and semiconductors) using a fully automated workflow combining the VASP and LOBSTER software packages. We then automatically evaluated the data with LobsterPy (https://github.com/jageo/lobsterpy) and provide results as a database. The projected densities of states and bonding indicators are benchmarked on VASP projections and available heuristics, respectively. Lastly, we illustrate the predictive power of bonding descriptors by constructing a machine-learning model for phononic properties, which shows an increase in prediction accuracies by 27 % (mean absolute errors) compared to a benchmark model differing only by not relying on any quantum-chemical bonding features. T2 - Sommersymposium des Fördervereins Chemieolympiade CY - Online meeting DA - 15.04.2023 KW - Automation KW - Chemical Bonds KW - DFT KW - Quantum Chemistry PY - 2023 AN - OPUS4-57310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding with geometrical and quantum-chemical bonding analysis N2 - Chemical bonding and coordination environments are crucial descriptors of material properties. They have previously been applied to creating chemical design guidelines and chemical heuristics. They are currently being used as features in machine learning more and more frequently. I will discuss implementations and algorithms (ChemEnv and LobsterEnv) for identifying these coordination environments based on geometrical characteristics and chemical bond quantum chemical analysis. I will demonstrate how these techniques helped in testing chemical heuristics like the Pauling rule and thereby improved our understanding of chemistry. I will also show how these tools can be used to create new design guidelines and a new understanding of chemistry. To use quantum-chemical bonding analysis on a large-scale and for machine-learning approaches, fully automatic workflows and analysis tools have been developed. After presenting the capabilities of these tools, I will also point out how these developments relate to the general trend towards automation in the field of density functional based materials science. T2 - UniSysCat - Colloquium CY - Berlin, Germany DA - 08.02.2023 KW - Automation KW - Chemical Bonds KW - High-throughput KW - Data Analysis PY - 2023 UR - https://www.unisyscat.de/news-events/display?tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Bnews%5D=386&cHash=f95c8af783c08c2c6039440145a036bb AN - OPUS4-57051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertural, Christina A1 - George, Janine T1 - Vibe Check via Machine Learning: Testing the Prototype N2 - Vibrational properties play a key role in determining the stability and thermal conductivity behaviour of materials. The quasi- harmonic approximation gives insight into the phononic properties of a compound, but in the established way, i.e. density functional theory based methods, it takes many calculation steps and consumes a lot of resources to arrive at the desired results. Machine learning (ML) trained interatomic potentials (e.g. Gaussian approximation potential, GAP) pose an alternative to the traditional computation way of phonons. We develop a Python code based workflow which combines automation tools like atomate2 with ML to ease providing interactomic potentials for (quantum chemical) computations and databases. T2 - #RSCPoster Twitter conference 2023 CY - Online meeting DA - 28.02.2023 KW - Interatomic potentials KW - Machine learning KW - Phonons KW - Workflow PY - 2023 UR - https://twitter.com/cer5814012/status/1630547004462858240 AN - OPUS4-57059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bustamante, Joana A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Ueltzen, Katharina A1 - George, Janine T1 - Thermodynamic and Thermoelectric Properties of the Canfieldite, (Ag8SnS6 ), in the Quasi-Harmonic Approximation N2 - Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties.One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, a new low-temperature (LT) phase transition of canfieldite at 120K has been found. Here, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Thermal properties such as the constant-pressure heat capacity (Cp) and thermal conductivity are very close to experimental measurements. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with argyrodites analogues, Ag8XS6 (X = Sn, Si, Ge), to arrive at an improved T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Thermoelectric materials KW - DFT KW - QHA KW - Grüneisen parameter PY - 2023 AN - OPUS4-57887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding and machine learning of materials properties N2 - Bonds and local atomic environments are crucial descriptors of material properties. They have been used to create design rules and heuristics for materials. More and more frequently, they are used as features in machine learning. Implementations and algorithms (e.g., ChemEnv and LobsterEnv) for identifying these local atomic environments based on geometrical characteristics and quantum-chemical bonding analysis are nowadays available. Fully automatic workflows and analysis tools have been developed to use quantum-chemical bonding analysis on a large scale and for machine-learning approaches. The latter relates to a general trend toward automation in density functional-based materials science. The lecture will demonstrate how our tools, that assess local atomic environments, helped to test and develop heuristics and design rules and an intuitive understanding of materials. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Irland DA - 03.07.2023 KW - Automation KW - Bonding Analysis KW - Materials Informatics PY - 2023 AN - OPUS4-57876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Automation and Workflows in Computational Materials Science N2 - This talks describes why we need automation and workflows in materials informatics. It introduces tools to automatize tasks in computational materials science. Furthermore, a bonding analysis and a phonon workflow are presented. T2 - Seminar in Theoretical Chemistry Group atFU Berlin CY - Berlin, Germany DA - 06.12.2022 KW - Automation KW - Workflows KW - Density functional theory PY - 2022 AN - OPUS4-56524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertural, Christina A1 - Deringer, V. A1 - George, Janine T1 - Automation of machine learning driven interatomic potential generation for predicting vibrational properties N2 - Knowing phonon properties is beneficial for predicting low thermal conductivity thermoelectric materials. Employing DFT consumes lots of computational resources. Using ML-driven interatomic potentials (MLIP, e.g., GAP) opens up a faster route, but most potentials are specifically tailored to a certain compound. We aim to generalize the MLIP generation in a Python code-based workflow, combining automatic DFT runs with automated GAP fits. Automation enables easier tests, benchmarks, and validation. T2 - SALSA Make and Measure Conference: Interfaces CY - Berlin, Germany DA - 13.09.2023 KW - Interatomic potentials KW - Machine learning KW - Phonons KW - Thermoelectrics KW - Automated workflows PY - 2023 AN - OPUS4-58374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials N2 - Understanding the chemistry and nature of individual chemical bonds is essential for materials design. Bonding analysis via the LOBSTER software package has provided valuable insights into the properties of materials for thermoelectric and catalysis applications. Thus, the data generated from bonding analysis becomes an invaluable asset that could be utilized as features in large-scale data analysis and machine learning of material properties. However, no systematic studies exist that conducted high-throughput materials simulations to curate and validate bonding data obtained from LOBSTER. Here we present an approach to constructing such a large database consisting of quantum-chemical bonding information. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 AN - OPUS4-57889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine T1 - Handling of orbital-resolved "ICOHPLIST.lobster" files from the software Lobster in pymatgen N2 - Python Materials Genomics (pymatgen) is a robust materials analysis code that defines classes for structures and molecules with support for many electronic structure codes. This open-source software package powers the Materials Project. In this particular contribution, the handling of obital-resolved "ICOHPLIST.lobster" files from Lobster was implemented in the software package (github handle: @JaGeo). KW - Bonding analysis KW - Density functional theory PY - 2023 UR - https://github.com/materialsproject/pymatgen/pull/2993 PB - Zenodo CY - Geneva AN - OPUS4-57569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, S. A1 - Rietz, U. A1 - Stockmann, Jörg M. T1 - Materials testing using centrifuge technology a journey through time from 2004 to 2024 N2 - This presentation provides an overview of materials testing using centrifuge technology in the period from 2004 to 2024. The development, the proof of concept, the functional principle, various operating modes as well as applications and examples are shown. T2 - ICDAMT 2024 CY - Berlin, Germany DA - 10.06.2024 KW - Centrifuge technology KW - Materials testing KW - Centrifugal adhesion testing KW - Tensile and cmpressive stress testing PY - 2024 AN - OPUS4-60541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Reed, B.P. A1 - Marchesini, S. A1 - Pollard, A.J. A1 - Clifford, C.A. T1 - Reliable measurements of the chemical composition of graphene-related 2D materials with X-ray photoelectron spectroscopy N2 - Graphene and related 2D materials (GR2Ms) are now entering an exciting phase of commercialization and use in products. Graphene nanoplatelets (GNPs) can be obtained in rather large quantities, but the properties of these industrially produced powders can vary depending on the production method, and even from batch to batch. Understanding and optimizing the surface chemistry of GNPs, modified through chemical functionalization processes is crucial, because it affects their dispersibility in solvents and matrices for the purpose of embedding them into real-world products. Therefore, reliable and repeatable measurements of the surface chemistry of functionalized GNPs are an important issue for suppliers as well as users of these materials. To address these concerns, international documentary ISO standards for measurement methodologies are under development which incorporate protocols that are becoming widely accepted in the community. Recently, it was shown that pelletizing led to lower average O/C atomic ratios than those measured for powders [1]. In another study, the influence of the morphology on the degree of functionalization was shown [2]. As expected, a higher degree of functionalization was detected for smaller GNPs. The functionalization was located at the outermost surfaces of the GNPs by comparing experiments using photoelectron with soft (Al Kα, 1.486 keV) and hard X-rays (Cr Kα, 5.405 keV). Therefore, it is important for those using GNPs to understand both the physical and chemical properties of these particles, when considering their use in different applications. The next step for reliable characterization protocols was the realization of an interlaboratory comparison under the auspices of VAMAS (Versailles Project on Advanced Materials and Standards) with 22 participating laboratories from all over the world. Samples of oxygen-, nitrogen-, and fluorine- functionalized GNPs were provided to the participants along with a measurement protocol. Participants were asked to prepare the samples as powders on a tape, powders in a sample holder recess, or as pellets. The lower measured O/C ratio reported for pelletized samples [1] was confirmed. The lowest scattering of the results was observed for the powders measured in the recess (Fig. 1). Furthermore, an influence of the humidity on the results was observed. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Interlaboratory Comparison KW - Functionalized graphene KW - Sample preparation PY - 2024 AN - OPUS4-60533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Ciornii, Dmitri A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Bennet, F. A1 - Meirer, F. A1 - Duijndam, A. A1 - Thünemann, Andreas A1 - Drexel, R. A1 - Fadda, M. A1 - Sacco, A. A1 - Giovannozzi, A.M. A1 - Donskyi, I. A1 - Schusterbauer, R. A1 - Nickl, P. A1 - Reichardt, P. A1 - Altmann, Korinna T1 - Revealing surface functionalities of micro- and nanoplastic particles’ surface by means of XPS N2 - Over the last 20 years, many researchers, politicians, and citizens themselves have become increasingly aware of the growing plastic problem of our time. Inadequate recycling concepts, collection points, and careless dumping of plastic products in the environment lead to an accumulation of plastic. External weather influences can cause these to degrade and fractionate, so that today microplastics (1-1000 µm, ISO/TR 21960:2020) [1] of different polymer materials can be detected in all parts of the world. The precautionary principle applies to microplastics. The particles can break down further to form nanoplastics (<1 µm, ISO/TR 21960:2020) [1]. Whether microplastics or nanoplastics pose a toxicological hazard is being investigated in a variety of ways. Valid results are still pending, however, investigations into the frequency, transport, possible sinks and entry paths must be taken into account. This is why monitoring of microplastics is already required in the revision of the Drinking Water Framework Directive [2]. The same is still pending in the final version of the revision of the Waste Water Framework Directive this year, but is expected. Nanoplastics are particularly under discussion for having a toxic effect on humans and animals, as these particles are small enough to be absorbed by cells. For targeted toxicological studies, it is important to have test and reference materials that resemble the particles found in the environment. To mimic environmental samples, these materials should also have an irregular shape and show aging at the surface, which can be detected with XPS or SEM/EDS. BAM in collaboration with the EMPIR project "PlasticTrace" works on a reference material candidate of nano-sized polypropylene (nano-PP) [3]. The nano-PP vials were tested for homogeneity with PTA and further characterized with bulk and surface-sensitive techniques. An SEM image and a corresponding XPS spectrum are presented in Figure 1. Raman measurements as well as XPS indicate an aged surface. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Surface chemistry KW - Micro- and nanoplastics KW - X-ray Photoelectron Spectroscopy KW - MNP production technique PY - 2024 AN - OPUS4-60535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Weimann, T. A1 - Bütefisch, S. T1 - A new XPS test material for more reliable surface analysis of microstructures N2 - Small-area XPS analysis is one of the most popular and powerful methods for analysing the surface of features in the micro-range. When measuring microstructures, the ques-tion arises whether the measuring point is really located at the point intended to be ana-lysed. Information in a measured spectrum might originate within the field of view (FoV) on the surface of the sample, from outside the FoV, or even from inherent contamination. To ensure that small structures can be measured correctly regardless of user and instru-ment, certain instrument and sample settings must be known and selected correctly: beam and aperture size as well as the aperture settings and the approximate dimensions of the structure to be analysed. This is the only way to ensure that the information in the spectrum originates only from the FoV on the analysed structure. To test the performance of the XPS instruments, a dedicated test material was developed that consists of a gold surface on which 8 circles and 8 squares of chrome are incorpo-rated using a masking process, so that the Au substrate and the Cr structure surfaces are in the same surface plane. In order to be able to test as many as possible instruments from different manufacturers, the structures have been designed with a size ranging from 300 µm down to 7 µm. The layout of the test material has been optimised in regard of the handling. The structures are arranged along lines instead of a circumference, marking arrows around the smaller structures (≤50 µm) are added, and the lithography mask is optimised regarding edge and diffraction effects. Furthermore, the manufacturing process was changed from electron-beam deposition to mask lithography due to costs reasons. The structures on the test material were measured with a metrological SEM to determine their accurate dimensions and check the repeatability of the manufacturing process. XPS investigations with a Kratos AXIS Ultra DLD and an ULVAC-Phi Quantes demonstrates the suitability of this new test material for measuring the analysed area. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Small-area XPS KW - Test material KW - Field of view KW - Imaging PY - 2024 AN - OPUS4-60539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Favre, G. T1 - How to expand the use of your test method? Validation is key towards standardisation N2 - Standardised methods need validation. The main validation parameters like trueness, repeatability and intermediate precision and reproducibility are presented. Furthermore, different methods for the validation are disussed: (certified) reference materials, representative testing materials and interlaboratory comparisons. At last, the need of proficiency testing is stressed. T2 - Materials Week 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Validation KW - Reproducibility crisis KW - Metrological traceability KW - Measurement uncertainty PY - 2024 AN - OPUS4-60536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Standardisation needs for regulatory testing of graphene and related 2D materials. phy-chem properties N2 - The main properties and main methods which are needed for the physico-chemical characterisation of graphene related 2D materials are discussed. As expample for standardization, protocols for the measurement of the chemical composition with XPS are discussed. The results of an interlaboratory comparisons led to new recommendations for the reliable measurments protocols. T2 - Materials Week 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Standardisation KW - Functionalized graphene KW - Interlaboratory comparison KW - Endpoints PY - 2024 AN - OPUS4-60537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Nützmann, Kathrin A1 - Falk, Florian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Witte, Steffen A1 - Radtke, Martin T1 - Early stages of high temperature oxidation/sulfidation studied by synchrotron x-ray diffraction and spectroscopy N2 - Ferritic high temperature alloys are widely used as boiler tube and heat exchanger materials in coal, biomass and co-fired power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres that lead to a change of the material properties and a further degradation of the material. Material changes caused by aging in highly corrosive and toxic gases such as SO2 are mainly studied ex situ after the reaction is finished. The solid material is deposited in the atmosphere for a certain period of time, and material changes are then examined by various microscopic techniques such as optical microscopy (OM), electron microprobe analysis (EMPA), scanning electron microscopy (SEM and TEM) and X-ray diffraction (XRD). Nevertheless, extensive efforts were made to study material changes of high temperature alloys under oxidizing and reducing atmospheres by environmental scanning electron microscopy or in situ TEM techniques However, the possibilities of microscopic in situ techniques are very limited for the use of highly corrosive and toxic gases such as SO2. Since Sulfur induced corrosion at temperatures relevant for coal and biomass fired power plants, which is causing breakaway oxidation and sulfide precipitation at grain boundaries, is still of scientific interest, the current work focuses on the effect of SO2 in an initial stage of corrosion of ferritic alloys. For the analysis of early stages of combined oxidation and sulphidation processes of Fe-Cr model alloys the usage of a light furnace to conduct a rapid reactive annealing experiment is feasible. Previous studies presented distinct results of the influence of chromium on early high temperature corrosion by SO2 by this technique and subsequent classical metallographic analyses. However, it is still not possible to trace the corrosion mechanism in real time by conducting single aging experiments. The current work introduces two different approaches to study the initial stages of high temperature oxidation processes by applying above state of the art X-ray diffraction and spectroscopy methods. One part focuses on the real time observation of the formation of corrosion products such as oxides and sulfides by energy dispersive X-ray diffraction (EDXRD). The potential of this technique to study crystallization and growth processes of thin films in a reactive environment in real time was previously shown for different compound semiconductors. This approach was now applied to follow oxidation and sulphidation processes of ferritic model alloys in SO2 and SO2/H2O environments. The diffraction signals of the X-rays were detected during the corrosion process and the peak area and positions were analyzed as a function of time. This procedure enables monitoring external oxide growth and material loss in real time in an early stage of corrosion. The other part of the current work presents the possibilities of X-ray absorption near edge structure spectroscopy (XANES) to characterize oxide scales and their growth mechanisms. Precise phase identification and quantification of corrosion products in a multi-phase oxide/sulfide scale is a pre-requisite to understand diffusion paths of metal ions and gas components. It is a challenging task to distinguish structurally similar reaction products such as Fe3O4 and FeCr2O4 especially in thin films with texture effects by diffraction. To illustrate for example Cr-out diffusion of an alloy throughout an inner and external oxide scale the differentiation of Fe3O4 and FeCr2O4 is indispensable. XANES uses the photoionization effect at the metal absorption edge in an aging product and accesses by this structural and chemical information. The current work uses XANES at the Fe-K and Cr-K absorption edge to identify various aging products grown as thin layers on alloys after short time aging experiments. A reaction chamber for combining high temperature oxidation experiments with surface sensitive X-ray absorption near edge structure spectroscopy will be introduced and first results of XANES on scales at high temperatures will be presented. T2 - ISHOC 2018 CY - Matsue, Japan DA - 22.10.2018 KW - Corrosion KW - Sulfidation KW - In situ KW - Diffraction KW - XANES PY - 2018 AN - OPUS4-47278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine A1 - Petretto, G. A1 - Naik, Aakash Ashok A1 - Esters, M. A1 - Jackson, A. J. A1 - Nelson, R. A1 - Dronskowski, R. A1 - Rignanese, G.-M. A1 - Hautier, G. T1 - Automated bonding analysis with crystal orbital Hamilton populations (program code LobsterPy) N2 - This is the code for the program LobsterPy that can be used to automatically analyze and plot outputs of the program Lobster. KW - Automation KW - High-throughput computations KW - Bonding analysis PY - 2022 UR - https://doi.org/10.5281/zenodo.6320074 UR - https://doi.org/10.5281/zenodo.6415169 UR - https://doi.org/10.5281/zenodo.6415336 UR - https://doi.org/10.5281/zenodo.6581118 DO - https://doi.org/10.5281/zenodo.6320073 PB - Zenodo CY - Geneva AN - OPUS4-55174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials (JSONS: Part 2) N2 - This database consists of bonding data computed using Lobster for 1520 solid-state compounds consisting of insulators and semiconductors. The files are named as per ID numbers in the materials project database. Here we provide the larger computational data JSON files for the rest of the 820 compounds. This file consists of all important LOBSTER computation output files data stored as a dictionary. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7821727 PB - Zenodo CY - Geneva AN - OPUS4-57440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 1) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) Refer to README.md file instructions to reproduce the data. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852082 PB - Zenodo CY - Geneva AN - OPUS4-57441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 7) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852820 PB - Zenodo CY - Geneva AN - OPUS4-57447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 2) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852107 PB - Zenodo CY - Geneva AN - OPUS4-57442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine T1 - Raw data for "Automated bonding analysis with crystal orbital Hamilton populations" N2 - Raw data corresponding to the following paper: 10.1002/cplu.202200123. KW - Automation KW - High-throughput computations KW - Bonding analysis PY - 2022 UR - https://doi.org/10.5281/zenodo.6373369 DO - https://doi.org/10.5281/zenodo.6373368 PB - Zenodo CY - Geneva AN - OPUS4-55175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding N2 - Chemical heuristics are essential to understanding molecules and materials in chemistry. The periodic table, atomic radii, and electronegativities are only a few examples. Initially, they have been developed by a combination of physical insight and a limited amount of data. It is now possible to test these heuristics and generate new ones using automation based on Materials Informatic tools like pymatgen and greater amounts of data from databases such as a Materials Project. In this session, I'll speak about heuristics and design rules based on coordination environments and the concept of chemical bonding. For example, we have tested the Pauling rules which describe the stability of materials based on coordination environments and their connections on 5000 oxides from the Materials Project. In addition, we have created automated processes for analyzing the chemical bonding situation in crystalline materials with Lobster (www.cohp.de) in order to discover new heuristics and design rules. T2 - Materials Project Seminar Series CY - Online meeting DA - 18.05.2022 KW - DFT KW - Chemical heuristics KW - Crystal Orbital Hamilton Populations KW - Machine learning KW - Phonons PY - 2022 UR - https://www.youtube.com/watch?v=e7zYrz6fgog UR - https://next-gen.materialsproject.org/community/seminar AN - OPUS4-55008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Amariamir, Sasan A1 - Benner, Philipp A1 - George, Janine T1 - Prediction of materials synthesizability N2 - In the pursuit of discovering materials with desirable properties, extending the available material libraries is crucial. High-throughput simulations have become an integral part in designing new materials in the past decades. However, there is no straightforward way of distinguishing synthesizable materials from all the proposed candidates. This project focuses on employing AI-driven methods to estimate synthesizability of materials. Up to now, material scientists and engineers have relied on domain knowledge as well as empirical heuristics to guess the stability and synthesizability of molecules and crystals. The famous Pauling rules of crystal stability are an example of such heuristics. However, after the accelerating material discovery in all the years since Pauling, these rules now fail to account for the stability of most known crystals. A new predictive set of heuristics for crystal stability/synthesizability is unlikely to be uncovered by human perception, given the magnitude and dimensionality of crystallographic data. Hence, a data-driven approach should be proposed to find a predictive model or set of heuristics which differentiate synthesizable crystal structures from the rest. The main challenge of this research problem is the lack of a negative set for classification. Here, there are two classes of data: the positive class which contains synthesizable materials and the negative class which contains materials which are not synthesizable. While the data from the positive class is simply the data of crystals which have been experimentally synthesized, we do not have access to data points which are certainly unsynthesizable. Strictly speaking, if an attempt of synthesizing a crystal fails, it does not necessarily follow that the crystal is not synthesizable. Also, there is no database available which contains the intended crystal structures of unsuccessful synthesis attempts. This project proposes a semi-supervised learning scheme to predict crystal synthesizability. The ML model is trained on experimental and theoretical crystal data. The initial featurization focuses on local environments which is inspired by the Pauling Rules. The experimental data points are downloaded through the Pymatgen API from the Materials Project database which contains relaxed structures recorded in Inorganic Crystal Structure Database – ICSD. The theoretical data is queried from select databases accessible through the Optimade project’s API. T2 - MSE Congress 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Synthesizability KW - PU Learning KW - Cheminformatics PY - 2022 AN - OPUS4-56731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna C. A1 - Riechers, Birte A1 - Pauw, Brian Richard A1 - Maaß, Robert A1 - Günster, Jens T1 - Microplastic response of 2PP‐printed ceramics N2 - AbstractTwo‐photon polymerization (2PP) additive manufacturing (AM) utilizes feedstocks of ceramic nanoparticles of a few nanometers in diameter, enabling the fabrication of highly accurate technical ceramic design with structural details as small as 500 nm. The performance of these materials is expected to differ from conventional AM ceramics, as nanoparticles and three‐dimensional printing at high resolution introduce new microstructural aspects. This study applies 2PP‐AM of yttria‐stabilized zirconia to investigate the mechanical response behavior under compressive load, probing the influence of smallest structural units induced by the line packing during the printing process, design of sintered microblocks, and sintering temperature and thereby microstructure. We find a dissipative mechanical response enhanced by sintering at lower temperatures than conventional. The pursued 2PP‐AM approach yields a microstructured material with an increased number of grain boundaries that proposedly play a major role in facilitating energy dissipation within the here printed ceramic material. This microplastic response is further triggered by the filigree structures induced by hollow line packing at the order of the critical defect size of ceramics. Together, these unique aspects made accessible by the 2PP‐AM approach contribute to a heterogeneous nano‐ and microstructure, and hint toward opportunities for tailoring the mechanical response in future ceramic applications. KW - Manufacturing KW - Mechanical properties KW - Microstructure KW - Plasticity KW - Zirconia: yttria stabilized PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605176 DO - https://doi.org/10.1111/jace.19849 SN - 1551-2916 SP - 1 EP - 10 PB - Wiley CY - Oxford [u.a.] AN - OPUS4-60517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kool, L. A1 - Dekker, F. A1 - Bunschoten, A. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Velders, A. H. A1 - Saggiomo, V. T1 - Gold and silver dichroic nanocomposite in the quest for 3D printing the Lycurgus cup N2 - The Lycurgus cup is an ancient glass artefact that shows dichroism as it looks green when a white light is reflected on it and a red colouring appears when a white light is transmitted through it. This peculiar dichroic effect is due to silver and gold nanoparticles present in the glass. In this research we show the synthesis of dichroic silver nanoparticles and their embedding in a 3D printable nanocomposite. The addition of gold nanoparticles to the silver nanoparticle composite, gave a 3D printable nanocomposite with the same dichroism effect of the Lycurgus cup. KW - SAXS KW - Au KW - Ag KW - Nanocomposite KW - 3D printing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-501831 DO - https://doi.org/10.3762/bjnano.11.2 SP - 16 EP - 23 AN - OPUS4-50183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Hörmann, Anja A1 - Moradi, Melika A1 - Smales, Glen Jacob A1 - Breßler, Ingo A1 - Moeez, Abdul T1 - Laboratory x-ray scattering instruments as agile test-beds towards holistic experimentation N2 - Laboratory sources offer a unique advantage compared to synchrotron sources, largely in terms of freedom of operation. This freedom from user obligations, technology and software stacks and legacy decisions make the laboratory a very flexible place to develop and explore new ideas. The unparalleled availability furthermore allows for iterative improvement of instrumentation, sample environments and measurement methodologies to maximise the quality of the data obtained. This talk will highlight the use of the laboratory as an agile test-bed and development space, by giving examples of some complete and incomplete investigations undertaken in our laboratory over the last years. Furthermore, it will introduce the concept of holistic experimentation, where the laboratory provides broad-ranging support for materials science investigations. This means that we assist in the experimental preparation, perform the measurements, correction and analysis, and follow-up with assistance in interpretation of our analyses in light of the results from other techniques applied to the investigation. T2 - Invited talk at Diamond Light Source CY - Didcot, UK DA - 22.05.2024 KW - X-ray scattering KW - Methodology development KW - Laboratory management KW - Holistic experimentation KW - Laboratory automation KW - Nanostructural analysis PY - 2024 AN - OPUS4-60582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Small-angle scattering data analysis round robin dataset - Original for participants N2 - These are four datasets that were made available to the participants of the Small-angle Scattering data analysis round robin. The intent was to find out how comparable results from different researchers are, who analyse exactly the same processed, corrected dataset. In this repository, there are: 1) a PDF document with more details for the study, 2) the datasets for people to try and fit, 3) an Excel spreadsheet to document the results. Datasets 1 and 2 were modified from: Deumer, Jerome, & Gollwitzer, Christian. (2022). npSize_SAXS_data_PTB (Version 5) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5886834 Datasets 3 and 4 were collected in-house on the MOUSE instrument. KW - Round robin KW - SAXS KW - Small angle scattering KW - SANS KW - X-ray KW - Neutron KW - Human factor KW - Data analysis KW - Data fitting KW - Human influence PY - 2023 DO - https://doi.org/10.5281/zenodo.7506365 PB - Zenodo CY - Geneva AN - OPUS4-56799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: A test artifact for direct laser writing N2 - With femtosecond-laser direct writing (fs-LDW) maturing in all aspects as a manufacturing technology, a toolset for quality assurance must be developed. In this work we introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric features to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. selective laser melting. The test artifact introduced in this work was developed in particular to accommodate the high geometrical resolution of fs-LDW structures and the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal Raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our fs-LDW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresists, laser power and scanning speed and to analyze the geometric accuracy of a structure produced using these guidelines. The shown test artifact is publicly available as STL file on GitHub (https://github.com/BAMresearch/2PP-TestArtifact) and in the supplement. KW - Laser direct writing KW - Multi photon lithography KW - Reference material KW - Raman spectroscopy KW - Confocal raman imaging KW - Slicers KW - Open data on zenodo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580951 DO - https://doi.org/10.1088/1361-6501/acc47a VL - 34 IS - 7 SP - 1 EP - 14 PB - IOP Science AN - OPUS4-58095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bäßler, Ralph A1 - Amela Keserović, Amela A1 - Sobetzki, Joana A1 - Sarmiento Klapper, Helmuth A1 - Dimper, Matthias T1 - Geeignete Werkstoffe für Geothermieanwendungen (1) N2 - Durch Auslagerungs- und elektrochemische Tests im Labor kann das Korrosionsverhalten verschiedener metallener Werkstoffe beurteilt werden. Aus den Versuchsergebnissen, die in verschiedenen synthetischen Geothermalwässern im Labor erzielt wurden, lassen sich die folgenden Schlussfolgerungen ziehen: • Die Anfälligkeit für Spaltkorrosion wurde als wichtigster Aspekt für die Werkstoffqualifizierung ermittelt. • Der niedriglegierte Stahl 25CrMo4 zeigte bei niedrigem Salzgehalt in MB-Geothermalwasser eine gleichmäßige Korrosion unterhalb der akzeptierten Schwelle von 0,3 mm/Jahr. Daher kann er als geeignet für geothermische Bedingungen mit niedrigem Salzgehalt angesehen werden, wie sie für MB getestet wurden. Es besteht keine Notwendigkeit, auf höherlegierte (teurere) Werkstoffe auszuweichen. Ein niedrigerer pH-Wert (wie bei LHD) führt zu Korrosionsraten oberhalb der akzeptablen Grenzwerte, so dass die niedriglegierten Werkstoffe nicht für Flüssigkeiten mit niedrigem pH-Wert geeignet sind. • Stark salzhaltige Geothermalwässer erfordern höherlegierte Werkstoffe, da die Korrosionsrate von niedriglegiertem Stahl zu hoch ist. • Der Duplexstahl X2CrNiMo22-5-3 und der Superduplexstahl X2CrNiMoCuWN25-7-4 wurden aufgrund ihrer kritischen Anfälligkeit für örtliche Korrosion in Form von Loch- und Spaltkorrosion unter Betriebsbedingungen nicht als geeignet für geothermische Anwendungen in Geothermalwässern mit einer mit NDB und ORG vergleichbaren Zusammensetzung angesehen. • Der superaustenitische Stahl X1CrNiMoCu32-28-7 eignet sich für ORG und salzarme Wässer. In NDB-Geothermalwasser wurde er bei 100 °C als geeignet angesehen. Jedoch schränkt seine Anfälligkeit für Spaltkorrosion seine Anwendbarkeit ein. Neben seiner guten Korrosionsbeständigkeit ist sein Repassivierungsverhalten für seine begrenzte Anwendbarkeit in Geothermalwässern mit niedrigem pH-Wert verantwortlich. • Die Nickelbasislegierung NiCr23Mo16Al wurde als geeignet erachtet und stellt eine sichere Option für den Einsatz in geothermischen Anlagen dar, selbst wenn mit stark salzhaltigem Geothermalwasser gearbeitet wird. KW - Geothermie KW - Korrosion KW - Legierungen KW - Anlagensicherheit PY - 2024 SN - 0016-4232 VL - 2024 IS - 2 SP - 240 EP - 243 PB - Eugen G. Leuze Verlag CY - Bad Saulgau AN - OPUS4-59996 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bäßler, Ralph A1 - Amela Keserović, Amela A1 - Sobetzki, Joana A1 - Sarmiento Klapper, Helmuth A1 - Dimper, Matthias T1 - Geeignete Werkstoffe für Geothermieanwendungen (2) N2 - Durch Auslagerungs- und elektrochemische Tests im Labor kann das Korrosionsverhalten verschiedener metallener Werkstoffe beurteilt werden. Aus den Versuchsergebnissen, die in verschiedenen synthetischen Geothermalwässern im Labor erzielt wurden, lassen sich die folgenden Schlussfolgerungen ziehen: • Die Anfälligkeit für Spaltkorrosion wurde als wichtigster Aspekt für die Werkstoffqualifizierung ermittelt. • Der niedriglegierte Stahl 25CrMo4 zeigte bei niedrigem Salzgehalt in MB-Geothermalwasser eine gleichmäßige Korrosion unterhalb der akzeptierten Schwelle von 0,3 mm/Jahr. Daher kann er als geeignet für geothermische Bedingungen mit niedrigem Salzgehalt angesehen werden, wie sie für MB getestet wurden. Es besteht keine Notwendigkeit, auf höherlegierte (teurere) Werkstoffe auszuweichen. Ein niedrigerer pH-Wert (wie bei LHD) führt zu Korrosionsraten oberhalb der akzeptablen Grenzwerte, so dass die niedriglegierten Werkstoffe nicht für Flüssigkeiten mit niedrigem pH-Wert geeignet sind. • Stark salzhaltige Geothermalwässer erfordern höherlegierte Werkstoffe, da die Korrosionsrate von niedriglegiertem Stahl zu hoch ist. • Der Duplexstahl X2CrNiMo22-5-3 und der Superduplexstahl X2CrNiMoCuWN25-7-4 wurden aufgrund ihrer kritischen Anfälligkeit für örtliche Korrosion in Form von Loch- und Spaltkorrosion unter Betriebsbedingungen nicht als geeignet für geothermische Anwendungen in Geothermalwässern mit einer mit NDB und ORG vergleichbaren Zusammensetzung angesehen. • Der superaustenitische Stahl X1CrNiMoCu32-28-7 eignet sich für ORG und salzarme Wässer. In NDB-Geothermalwasser wurde er bei 100 °C als geeignet angesehen. Jedoch schränkt seine Anfälligkeit für Spaltkorrosion seine Anwendbarkeit ein. Neben seiner guten Korrosionsbeständigkeit ist sein Repassivierungsverhalten für seine begrenzte Anwendbarkeit in Geothermalwässern mit niedrigem pH-Wert verantwortlich. • Die Nickelbasislegierung NiCr23Mo16Al wurde als geeignet erachtet und stellt eine sichere Option für den Einsatz in geothermischen Anlagen dar, selbst wenn mit stark salzhaltigem Geothermalwasser gearbeitet wird. KW - Geothermie KW - Korrosion KW - Legierungen KW - Anlagensicherheit PY - 2024 SN - 0016-4232 VL - 2024 IS - 3 SP - 370 EP - 374 PB - Eugen G. Leuze Verlag CY - Bad Saulgau AN - OPUS4-59997 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - A holistic experiment chain for scattering-powered materials science investigations N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators over the last five years. Combined with universal, automat-ed data correction pipelines, as well as our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. While this approach greatly improved the consistency of the results, the consistency of the samples and sample series provided by the users was less reliable nor necessarily reproducible. To address this issue, we built an EPICS-controlled, modular synthesis platform to add to our laboratory. To date, this has prepared over 1200 additional (Metal-Organic Framework) samples for us to meas-ure, analyse and catalogue. By virtue of the automation, the synthesis of these samples is automat-ically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases alongside the morphological results obtained from the automated X-ray scat-tering analysis. Having developed these proof-of-concepts, we find that the consistency of results are greatly im-proved by virtue of their reproducibility, hopefully adding to the reliability of the scientific findings as well. Additionally, the nature of the experiments has changed greatly, with much more emphasis on preparation and careful planning. This talk will discuss the advantages and disadvantages of this highly integrated approach and will touch upon upcoming developments. T2 - canSAS-XIII CY - Grenoble, France DA - 16.10.2023 KW - Methodology KW - Lab automation KW - X-ray scattering KW - Automated synthesis KW - Data stewardship KW - Holistic experimental procedures KW - Scicat PY - 2023 AN - OPUS4-58643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saadeh, Qais A1 - Pauw, Brian Richard A1 - Thünemann, Andreas A1 - Günster, Jens T1 - In-Situ SAXS Techniques N2 - Our project's aim is to enhance the capabilities of additive manufacturing techniques, where enabling a Two-Photon-Polymerization (TPP) 3D printer of producing arrays of precisely aligned nanoparticles is of an enormous value. As heterogeneous functional nanostructures with arrays of oriented nanoparticles are very promising in many fields; electrochemistry, energy storage, nanoelectronics among other vital fields. The feasibility and the convenience of orienting nanoparticles using magnetic, electric fields and ultrasonic vibrations will be systematically investigated, using Small Angle X-ray Scattering (SAXS), since SAXS can provide detailed information about the orientation characteristics of nano-Ensembles. Corresponding to our prerequisites, a set ad hoc functional sample holders, sample stages and other In-Situ SAXS solutions were developed, and incorporated to be compatible with a state-of-the-arts SAXS machine, called Multi-scale Analyzer for Ultrafine Structures (MAUS). The MAUS has been customized and engineered to serve as a miniaturized synchrotron, and that is exactly what we need. Experiments attempting to orient superparamagnetic nanoparticles will be discussed, where the outcomes will not only help in understanding the mechanics of field-particle interactions, it will also help in further developing the adequate needed set of corrections to the SAXS data, that is especially regards oriented samples. T2 - XVII International Small Angle Scattering Conference – SAS 2018 CY - Traverse City, Michigan, USA DA - 07.10.2018 KW - In-Situ Techniques KW - SAXS KW - Magnetic nano-particles PY - 2018 AN - OPUS4-46443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cornelsen Sampaio Kling, I. A1 - Pauw, Brian Richard A1 - Jacome, Leonardo A. A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Silver nanoparticle KW - Starch KW - Starch nanoparticle PY - 2020 SP - 1 EP - 2 AN - OPUS4-51940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - Glimpses of the future: a “full stack”, highly automated materials research laboratory N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. Having developed these proof-of-concepts, we find that materials research itself is changed dramatically by automating dull tasks in a laboratory. This talk is intended to spark ideas and collaborations by providing an overview of: 1) the current improvements in our scattering laboratory methodology, 2) introducing our open, modular robotic platform that is used for systematic sample preparation, and 3) demonstrating the data structure of the synthesis logs and measurements. Finally, the remaining bottlenecks and points of attention across all three are highlighted. T2 - FAIRmat seminar CY - Berlin, Germany DA - 28.09.2023 KW - Data stewartship KW - Metadata collection KW - Laboratory methodology KW - MOUSE KW - Robotics KW - Lab automation KW - Holistic science PY - 2023 UR - https://www.fairmat-nfdi.eu/events/brian-pauw AN - OPUS4-58464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard T1 - The SPONGE v.1.0.0: Modeling scattering of shapes by STL input, with absolute intensities and size distribution. N2 - Simulates X-ray and Neutron scattering patterns from arbitrary shapes defined by STL files. Features: - Uses multithreading to compute a number of independent solutions, then uses the variance of the results to estimate an uncertainty on the output. - Can be launched from the command line using an excel sheet to define settings, or from a jupyter notebook. - Outputs scattering patterns in absolute units if the contrast is set. - A Gaussian size distribution is available, where the relative scaling of objects for each repetion can be varied. Recommended to be used with limited width (max. 10%) to avoid artefacts. - Writes results with settings to an archival HDF5 file. Application examples: This software has been used in several studies to date. For example, it has been used here to simulate a model scattering pattern for a cuboid shape, which was then fed forward into the McSAS3 analysis program for analyzing scattering patterns of polydisperse cuboids. A second use is here, where it was used for the modeling of flattened helices. In this paper, scattering pattern features could be matched with particular morphological changes in the structure. Lastly, this paper has an example where it was used to validate the analytical analysis model, and explore the realistic limits of application of the analytical model. KW - Software KW - Scattering pattern analysis KW - Scattering pattern simulation KW - X-ray KW - Neutron KW - Command-line interface KW - Scattering pattern KW - STL file input KW - Python KW - Arbitrary shapes PY - 2023 DO - https://doi.org/10.6084/m9.figshare.21857130.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-56815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard T1 - McSAS3 N2 - McSAS3 is a refactored version of the original McSAS (see DOI 10.1107/S1600576715007347). This software fits scattering patterns to obtain size distributions without assumptions on the size distribution form. The refactored version has some neat features: - Multiprocessing is included, spread out over as many cores as number of repetitions! - Full state of the optimization is stored in an organized HDF5 state file. - Histogramming is separate from optimization and a result can be re-histogrammed as many times as desired. - SasModels allow a wide range of models to be used - If SasModels does not work (e.g. because of gcc compiler issues on Windows or Mac), an internal sphere model is supplied - Simulated data of the scattering of a special shape can also be used as a McSAS fitting model. Your models are infinite! - 2D fitting also works. KW - X-ray scattering KW - Polydispersity KW - Monte carlo KW - Scattering pattern analysis KW - Analysis approach KW - Neutron scattering KW - Automation KW - Command line PY - 2023 DO - https://doi.org/10.6084/m9.figshare.21814128.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-56787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Snow, T. T1 - Everything and the kitchen sink: correcting X-ray data for everything N2 - Recorded at the Better with Scattering workshop 2020, this talk highlights the complete set of data correction steps that we do for the MAUS, and how they can be used elsewhere too. This links well with the talk in this series by Dr. Tim Snow, and also highlights the details of the background subtraction that needs to be done. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Data corrections PY - 2020 UR - https://www.youtube.com/watch?v=Hp4qziOxZFk AN - OPUS4-51018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - Jupyter notebook and VASP calculation details accompanying the manuscript: "Ultima Ratio: Simulating wide-range X-ray scattering and diffraction" N2 - ## Summary: This notebook and associated datasets (including VASP details) accompany a manuscript available on the ArXiv (https://doi.org/10.48550/arXiv.2303.13435) and hopefully soon in a journal as short communication as well. Most of the details needed to understand this notebook are explained in that paper with the same title as above. For convenience, the abstract is repeated here: ## Paper abstract: We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is presented coupled to the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The ``Ultima Ratio'' strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from $Q<0.01$\,$\mathrm{nm}^{-1}$ up to $Q\approx150$\,$\mathrm{nm}^{-1}$, with a resolution of 0.16\,\AA. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to $8000^3$ voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-$Q$ behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - Scattering KW - MOUSE KW - Nanomaterials KW - XRD KW - SAXS KW - PDF KW - total scattering KW - 3D Fourier Transform KW - High Resolution KW - FFT PY - 2023 UR - https://doi.org/10.48550/arXiv.2303.13435 DO - https://doi.org/10.5281/zenodo.7764044 PB - Zenodo CY - Geneva AN - OPUS4-57207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Electric Safety Interlock N2 - This interlock is designed to prevent electrical shock from high voltage (>60V) equipment. While the general safety interlock can be generically applied, this particular example employs an external vacuum-activated switch. It is for safeguarding human operations inside a vacuum sample chamber while the chamber doors are open. The circuit is closed (output is active) when a sufficient level of vacuum is reached, i.e. when all accessible openings are necessarily closed. The initial application is to interrupt power to a 220V, 250W heating cartridge (itself mounted inside a small sample holder with potentially exposed contacts) when the sample chamber is open. The external circuit can be modified to use different interlock mechanisms as needed. Note that the external interlock circuit is only a single circuit (with two signal lines) and thus is not protected against external shorts. To accomodate a range of safety interlocks, the 4-pin M12 connector is wired as follows: Pin 1 (Brown): +24V for power supply, max current 0.6A Pin 2 (White): Safety interlock system signal 1 (0 or 24V) Pin 3 (Blue) : Safety interlock system signal 2 (0 or 24V) Pin 4 (Black): 0V for power supply The safety is interlocked (output active) when both signal pins are set high (24V), with sufficient current to activate the two relays. Pin 1 and 4 can be used to power safety hardware (such as light curtains or proximity detectors) with 24VDC up to a current of 0.6A. A larger power supply can be installed when higher currents are needed, while staying within the current limits imposed by the wiring cross-section. KW - Electric Safety Interlock KW - MOUSE KW - 60-230V PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22265920.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Hörmann, Anja A1 - Frontzek, Julius A1 - Du, Bofeng A1 - Breßler, Ingo T1 - Getting down to business: pragmatic solutions for laboratory automation N2 - A chemical engineer by training, Brian drifted towards physics and now focuses on a broad spectrum of activities with the aim to improve scientific reproducibility. This includes studies on holistically improving data quality, data collection efficiency and traceability, as well as concomitant laboratory automation for the preparation of consistent, well-documented sample series. The need for pragmatism led to an inexpensive, flexible laboratory automation platform that can be implemented in a modest amount of time. This talk presents that effort. T2 - Future Labs Live 2024 CY - Basel, Switzerland DA - 25.06.2024 KW - Laboratory automation KW - Experiment tracking KW - Holistic experimentation KW - Experimental traceability KW - Data visualisation KW - Parameter correlation. PY - 2024 AN - OPUS4-60583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saadeh, Qais A1 - Pauw, Brian Richard A1 - Thünemann, Andreas A1 - Günster, Jens T1 - In-situ SAXS techniques N2 - This project studies the orientation of nanoparticles under the influence of external stimuli such as electric fields, magnetic fields and ultra-sonic vibrations. A set of functional sample holders that fit inside the sample chamber of a state-of-the-art Small Angle X-ray Scattering (SAXS) machine, called the “Multi-scale Analyzer for Ultrafine Structures” (MAUS). The MAUS has been custom engineered to serve as a miniaturized Synchrotron, thus enabling standard material to be characterized to a high standard. Our work is needed to detail the fine characterization of reference nano-particles, not only on the nano-scale, but also coupled with external agents. A second aim of this project is to verify a few proof-of-concept designs for the alignment of nano-particles. Where the alignment of nano-particles In-Situ is intended to further develop 3D printing technologies, and SAXS is an ideal choice to study the alignment of an oriented ensemble. For more information about the MAUS; https://www.bam.de/Content/DE/Pressemitteilungen/2018/AnalyticalSciences/2018-01-31-mit-maus-an-die-spitze-der-nano-forschung.html T2 - NanoWorkshop 2018 (Workshop on Reference Nanomaterials. Current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - SAXS KW - Nano-particles alignment KW - Magnetic nano-particles PY - 2018 AN - OPUS4-44912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Pauw, Brian Richard A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes N2 - Superglassy polymers with a large fractional free volume have emerged as novel materials with a broad range of applications, especially in the field of membrane separations. Highly permeable addition-type substituted polynorbornenes with high thermal resistance and chemical stability are among the most promising materials. The major obstacle for extending the practical membrane application is their strong tendency to physical aging, leading to a partial decline in their superior transport performance over time. In the present study, broadband dielectric spectroscopy with complementary X-ray scattering techniques were employed to reveal changes in microporous structure, molecular mobility, and conductivity by systematic comparison of two polynorbornenes with different numbers of trimethylsilyl side groups. Their response upon heating (aging) was compared in terms of structure, dynamics, and charge transport behavior. Furthermore, a detailed analysis of the observed Maxwell−Wagner−Sillars polarization at internal interfaces provides unique information about the microporous structure in the solid films. The knowledge obtained from the experiments will guide and unlock potential in synthesizing addition-type polynorbornenes with versatile properties. KW - Dielectric spectroscopy KW - Molecular mobility KW - Electrical conductivity KW - Gas separation membranes PY - 2019 DO - https://doi.org/10.1021/acsapm.9b00092 SN - 2637-6105 VL - 1 IS - 4 SP - 844 EP - 855 PB - ACS CY - Washington DC AN - OPUS4-47838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Topolniak, Ievgeniia A1 - Schenderlein, Matthias A1 - Sturm, Heinz T1 - Nano polymer (composite) printing N2 - This talk introduces the PolyPoly, a new device at BAM which enables the three-dimensional structuring of polymer nanocomposites with an extremely high resolution of 150x150x600 nm. Initial examples and findings will be shown. T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - Multiphoton laser structuring KW - Polymer nanocomposites KW - 3d structuring KW - Additive manufacturing PY - 2019 AN - OPUS4-48041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Experimenting on MAUS N2 - Initial results, findings and experience after 1.5 years of using the Multi-scale Analyser for Ultrafine Structures (MAUS), a bespoke wide-range SAXS instrument for the nanostructure quantification of demanding materials science samples. T2 - S4SAS Conference 2019 CY - Diamond Light Source, Didcot, UK DA - 06.06.2019 KW - X-ray scattering KW - SAXS KW - Nanostructure quantification KW - Nanocharacterisation PY - 2019 AN - OPUS4-48193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Breßler, Ingo T1 - McSAS for SAS analysis: Usage, benefits, and potential pitfalls N2 - Introducing McSAS, the analytical tool (software) we developed for extracting form-free size distributions from X-ray scattering patterns. T2 - Small Angle Scattering Training School 2019 CY - Diamond Light Source, Didcot, UK DA - 04.06.2019 KW - X-ray scattering KW - SAXS KW - Software KW - Monte Carlo KW - Nanocharacterisation KW - Nanostructure PY - 2019 AN - OPUS4-48192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -