TY - JOUR A1 - Epperlein, Nadja A1 - Menzel, Friederike A1 - Schwibbert, Karin A1 - Koter, Robert A1 - Bonse, Jörn A1 - Sameith, Janin A1 - Krüger, Jörg A1 - Toepel, Jörg T1 - Influence of femtosecond laser produced nanostructures on biofilm growth on steel N2 - Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization. KW - Laser-induced periodic surface structures KW - Femtosecond laser KW - Steel KW - Biofilms KW - Microbial adhesion tests PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433217305470 DO - https://doi.org/10.1016/j.apsusc.2017.02.174 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 420 EP - 424 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Hilgenberg, Kai T1 - Damage development and damage tolerance of structures manufactured by selective laser melting - a review N2 - The additive manufacturing technology of Selective Laser Melting (SLM) experiences a rapid development within an increasing marked of quite different application fields. The properties of SLM materials and structures are influenced by a number of tech-nological parameters such as the metal powder (particle size, homogeneity, cleanliness), the laser tool (power, beam diameter, pulse lengths), the scanning operation (speed, sequence and orientation of melting paths), parameters of the over-all equipment (design and preheating of the base plate, currents and turbulence in the protective gas atmosphere) and, last not least, the hatching strategy including the build-up direction of the structure with respect to the loading direction of the component. For the perspective use of SLM structures as load carrying, safety-relevant components the knowledge of their mechanical properties is necessary. It is essential to understand these in the context of the manufacturing-related features and at the back-ground of the basic characteristics of metallic materials: crystal lattice, microstructure and material defects. The paper provides an overview on factors which affect the mechanical parameters stiffness, strength, ductility, toughness, fatigue crack propagation and fatigue strength in the context of selective laser melting. T2 - FDMD 2017 CY - Lecco, Italy DA - 19.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-438511 DO - https://doi.org/10.1016/j.prostr.2017.11.071 SN - 2452-3216 VL - 7 SP - 141 EP - 148 PB - ScienceDirect CY - Lecco, Italy AN - OPUS4-43851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Terril, N. J. A1 - Thünemann, Andreas T1 - The modular small-angle X-ray scattering data correction sequence N2 - Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors. KW - Small-angle X-ray scattering KW - SAXS KW - Accuracy KW - Methodology KW - Data correction PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432114 DO - https://doi.org/10.1107/S1600576717015096 SN - 1600-5767 VL - 50 IS - 6 SP - 1800 EP - 1811 PB - International Union of Crystallography AN - OPUS4-43211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison N2 - This paper presents the first worldwide inter-laboratory comparison of small-angle X-ray scattering (SAXS) for nanoparticle sizing. The measurands in this comparison are the mean particle radius, the width of the size distribution and the particle concentration. The investigated sample consists of dispersed silver nanoparticles, surrounded by a stabilizing polymeric shell of poly(acrylic acid). The silver cores dominate the X-ray scattering pattern, leading to the determination of their radius size distribution using (i) the generalized indirect Fourier transformation method, (ii) classical model fitting using SASfit and (iii) a Monte Carlo fitting approach using McSAS. The application of these three methods to the collected data sets from the various laboratories produces consistent mean number- and volume-weighted core radii of Rn = 2.76 (6) nm and Rv = 3.20 (4) nm, respectively. The corresponding widths of the lognormal radius distribution of the particles were σn = 0.65 (1) nm and σv = 0.71 (1) nm. The particle concentration determined using this method was 3.0 (4) g l−1 or 4.2 (7) × 10−6 mol l−1. These results are affected slightly by the choice of data evaluation procedure, but not by the instruments: the participating laboratories at synchrotron SAXS beamlines, commercial and in-house-designed instruments were all able to provide highly consistent data. This demonstrates that SAXS is a suitable method for revealing particle size distributions in the sub-20 nm region (at minimum), out of reach for most other analytical methods. KW - SAXS KW - Small-angle X-ray scattering KW - Silver nanoparticles PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-422800 DO - https://doi.org/10.1107/S160057671701010X SN - 1600-5767 VL - 50 IS - 5 SP - 1280 EP - 1288 PB - (IUCr) International Union of Crystallography AN - OPUS4-42280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Hahn, Marc Benjamin A1 - Solumon, Tihomir A1 - Strum, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine can enhance structural changes in DNA in vitro N2 - Strand breaks and conformational changes of DNA have consequences for the physiological role of DNA. The natural protecting molecule ectoine is beneficial to entire bacterial cells and biomolecules such as proteins by mitigating detrimental effects of environmental stresses. It was postulated that ectoine-like molecules bind to negatively charged spheres that mimic DNA surfaces. We investigated the effect of ectoine on DNA and whether ectoine is able to protect DNA from damages caused by ultraviolet radiation (UV-A). In order to determine different isoforms of DNA, agarose gel electrophoresis and atomic force microscopy experiments were carried out with plasmid pUC19 DNA. Our quantitative results revealed that a prolonged incubation of DNA with ectoine leads to an increase in transitions from supercoiled (undamaged) to open circular (single-strand break) conformation at pH 6.6. The effect is pH dependent and no significant changes were observed at physiological pH of 7.5. After UV-A irradiation in ectoine solution, changes in DNA conformation were even more pronounced and this effect was pH dependent. We hypothesize that ectoine is attracted to the negatively charge surface of DNA at lower pH and therefore fails to act as a stabilizing agent for DNA in our in vitro experiments. KW - Ectoine KW - DNA KW - UV radiation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-413139 DO - https://doi.org/10.1038/s41598-017-07441-z VL - 7 IS - 1 SP - Article 7170, 1 EP - 10 AN - OPUS4-41313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lamiel, C. A1 - Lee, Y. R. A1 - Cho, M. H. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Enhanced electrochemical performance of nickel-cobalt-oxide@reduced graphene oxide//activated carbon asymmetric supercapacitors by the addition of a redox-active electrolyte N2 - Supercapacitors are an emerging energy-storage system with a wide range of potential applications. In this study, highly porous nickel-cobalt-oxide@reduced graphene oxide (Ni-Co-O@RGO-s) nanosheets were synthesized as an active material for supercapacitors using a surfactant-assisted microwave irradiation technique. The RGO-modified nanocomposite showed a larger specific area, better conductivity, and lower resistivity than the unmodified nanocomposite because the RGO facilitated faster ion diffusion/transport for improved redox activity. The synergistic effect of Ni-Co-O@RGO-s resulted in a high capacitance of 1903 F/g (at 0.8 A/g) in a mixed KOH/redox active K3Fe(CN)6 electrolyte. The asymmetric Ni-Co-O@RGO-s//AC supercapacitor device yielded a high energy density and power density of 39 Wh/kg and 7500 W/kg, respectively. The porous structure and combination of redox couples from both the electrode and electrolyte provided a highly synergistic effect, which improved the performance of the supercapacitor device. KW - Ni-Co oxide KW - Reduced graphene oxide KW - Nanocomposite KW - Supercapacitor PY - 2017 DO - https://doi.org/10.1016/j.jcis.2017.08.003 SN - 0021-9797 SN - 1095-7103 VL - 507 SP - 300 EP - 309 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-41284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mady, A. H. A1 - Baynosa, M. L. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Facile microwave-assisted green synthesis of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation N2 - Nanocomposites of Ag-ZnFe2O4@reduced graphene oxide (rGO) were synthesized using a one-pot microwave-assisted self-assembly method. The morphology and structure of the Ag-ZnFe2O4@rGO nanocomposites were characterized. The nanocomposites formed with 15.2 wt% rGO showed excellent adsorption properties and high photocatalytic activity for the degradation of methylene blue (MB), rhodamine B (RhB), and methyl orange (MO). The synergistic interactions between Ag, ZnFe2O4, and rGO decreased the aggregation of the nanoparticles (NPs) and increased the surface area, resulting in better absorption in both UV and visible light. Such a structure was helpful for separating the photoexcited electron-hole pairs and accelerating electron transfer. Electrochemical impedance spectroscopy (EIS) revealed a smaller resistance in the solid-state interface layer and charge transfer on the composite surface than that of the bare ZnFe2O4 NPs and ZnFe2O4@rGO nanocomposite. The Ag-ZnFe2O4@rGO nanocomposite could be recovered easily by a magnet and reused five times with no significant decrease in photocatalytic activity. The as-prepared Ag-ZnFe2O4@rGO nanocomposite catalyst could be applied to the removal of hard-to-degrade waste materials owing to its high efficiency in both UV and visible light and its excellent reusability. KW - nanoparticles KW - microwave synthesis KW - photocatalysis PY - 2017 DO - https://doi.org/10.1016/j.apcatb.2016.10.033 SN - 0926-3373 SN - 1873-3883 VL - 203 SP - 416 EP - 427 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-37962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuma, Dirk A1 - Kumbhar, V. S. A1 - Lee, Y. R. A1 - Ra, C. S. A1 - Min, B.-K. A1 - Shim, J.-J. T1 - Modified chemical synthesis of MnS nanoclusters on nickel foam for high performance all-solid-state asymmetric supercapacitors N2 - Novel MnS nanoclusters were synthesized on nickel foam (NF) using a successive ionic layer adsorption and reaction (SILAR) method. MnS nanoclusters with different sizes were obtained by varying the number of deposition cycles. The crystal structure, chemical composition, and surface microstructure of the electrodes were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field Emission scanning electron microscopy, and high-resolution transmission electron microscopy. The electrochemical behavior of the MnS nanoclusters was examined by cyclic voltammetry, galvanostatic charge–discharge, cycling test, and electrochemical impedance spectroscopy. The MnS nanoclusters prepared with 90 SILAR cycles showed the best supercapacitance in a 6 M KOH aqueous electrolyte with a specific capacitance of 828 F/g at a scan rate of 5 mV/s and cycling stability of 85.2 % after 5000 charge–discharge cycles. Moreover, an asymmetric supercapacitor (ASC) was assembled with the as-prepared MnS electrode on NF as the positive electrode, hydrothermally prepared reduced graphene oxide (rGO) on NF as the negative electrode, and PVA–KOH gel as the electrolyte. The MnS@NF//rGO@NF ASC showed excellent electrochemical performance with maximum energy and power densities of 34.1 Wh/kg and 12.8 kW/kg, respectively. The ASC also showed a capacitive retention of 86.5 % after 2000 charge–discharge cycles, highlighting its practical application for energy storage. KW - Nanocluster KW - Electrochemical behavior KW - Asymmetric supercapacitor KW - Graphene oxide PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-403147 DO - https://doi.org/10.1039/c7ra00772h SN - 2046-2069 VL - 7 IS - 27 SP - 16348 EP - 16359 PB - The Royal Society of Chemistry CY - London AN - OPUS4-40314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Panne, Ulrich A1 - Falkenhagen, Jana T1 - Critical conditions for liquid chromatography of statistical copolymers: Functionality type and composition distribution characterization by UP-LCCC/ESI-MS N2 - Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOFMS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), Gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD. KW - Polymer KW - Liquid chromatography at critical conditions KW - ESI-TOF-MS PY - 2017 DO - https://doi.org/10.1021/acs.analchem.6b04064 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 3 SP - 1778 EP - 1786 AN - OPUS4-39240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation N2 - In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach–Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation. KW - Laser-induced periodic surface structures, LIPSS KW - Laser ablation KW - Surface plasmon polariton PY - 2017 DO - https://doi.org/10.1088/1402-4896/aa5578 SN - 1402-4896 SN - 0031-8949 VL - 92 IS - 3 SP - Article 034003, 1 EP - 7 PB - IOP CY - Bristol, UK AN - OPUS4-39082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Kirner, Sabrina V. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Laser-induced periodic surface structures — a scientific evergreen N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon and can be generated on almost any material upon irradiation with linearly polarized radiation. With the availability of ultrashort laser pulses, LIPSS have gained an increasing attraction during the past decade, since these structures can be generated in a simple single-step process, which allows a surface nanostructuring for tailoring optical, mechanical, and chemical surface properties. In this study, the current state in the field of LIPSS is reviewed. Their formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments. These experiments allow us to address the question whether the LIPSS are seeded via ultrafast energy deposition mechanisms acting during the absorption of optical radiation or via self-organization after the irradiation process. Relevant control parameters of LIPSS are identified, and technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser ablation KW - Nanostructures KW - Surface functionalization KW - Surface texture KW - Laser-induced periodic surface structures (LIPSS) PY - 2017 DO - https://doi.org/10.1109/JSTQE.2016.2614183 SN - 1077-260X SN - 1558-4542 VL - 23 IS - 3 SP - 9000615 PB - IEEE AN - OPUS4-38633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -