TY - JOUR A1 - Madia, Mauro A1 - Schork, B. A1 - Bernhard, J. A1 - Kaffenberger, M. T1 - Multiple crack initiation and propagation in weldments under fatigue loading N2 - The work aims at addressing the modelling and implementation of criteria for multiple crack propagation, including interaction and coalescence, for a more reliable fracture mechanics-based prediction of stress-life curves for weldments. A large experimental work is presented in which micro-cracks have been made visible by heat-tinting at successive stages of fatigue life of the welded specimens. Here the correlation between the number of initiation sites and the applied stress level has been also investigated. The criteria have been implemented in in-house software, which allows multiple fatigue crack propagation, and validated against selected experimental tests. The results have shown that the modelling of multiple crack propagation and interaction is crucial for the prediction of the fatigue strength of weldments, both in finite and infinite life regime. T2 - FDMD 2017 CY - Lecco, Italy DA - 19.09.2017 KW - Weldments KW - Fatigue strength KW - Multiple crack propagation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-438593 DO - https://doi.org/10.1016/j.prostr.2017.11.108 SN - 2452-3216 VL - 7 SP - 423 EP - 430 PB - Elsevier B.V. AN - OPUS4-43859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowarik, Stefan A1 - Weber, C. A1 - Pithan, L. A1 - Zykov, A. A1 - Bommel, S. A1 - Carla, F. A1 - Felici, R. A1 - Knie, C. A1 - Bléger, D. T1 - Multiple timescales in the photoswitching kinetics of crystalline thin films of azobenzene-trimers N2 - Functional materials that exhibit photoinduced structural phase transitions are highly interesting for applications in optomechanics and mechanochemistry. It is, however, still not fully understood how photochemical reactions, which are often accompanied by molecular motion, proceed in confined and crystalline environments. Here we show that thin films of azobenzene trimers exhibit high structural order and determine the crystallographic unit cell. We demonstrate that thin film can be switched partially reversibly between a crystalline and an amorphous phase. The time constant of the photoinduced amorphisation as measured with real-time x-ray diffraction ($\approx $ 220 s) lies between the two time constants (120 s and 2870 s) of the ensemble photoisomerisation processes that are measured via optical spectroscopy. Our observation of a photoinduced shrinking of the crystalline domains indicates a cascading process, in which photoisomerisation starts at the surface of the thin film and propagates deeper into the crystalline layer by introducing disorder and generating free volume. This finding is important for the rapidly evolving research field of photoresponsive thin films and smart crystalline materials in general. KW - Azobenzene PY - 2017 DO - https://doi.org/10.1088/1361-648X/aa8654 SN - 0953-8984 SN - 1361-648X VL - 29 IS - 43 SP - Article 434001, 1 EP - 8 AN - OPUS4-42501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina A1 - Wirth, Thomas A1 - Sturm, Heinz A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium N2 - The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ∼150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ∼200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Oxidation KW - Titanium KW - Auger electron spectroscopy PY - 2017 DO - https://doi.org/10.1063/1.4993128 SN - 0021-8979 VL - 122 IS - 10 SP - 104901, 1 EP - 9 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-41905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison N2 - This paper presents the first worldwide inter-laboratory comparison of small-angle X-ray scattering (SAXS) for nanoparticle sizing. The measurands in this comparison are the mean particle radius, the width of the size distribution and the particle concentration. The investigated sample consists of dispersed silver nanoparticles, surrounded by a stabilizing polymeric shell of poly(acrylic acid). The silver cores dominate the X-ray scattering pattern, leading to the determination of their radius size distribution using (i) the generalized indirect Fourier transformation method, (ii) classical model fitting using SASfit and (iii) a Monte Carlo fitting approach using McSAS. The application of these three methods to the collected data sets from the various laboratories produces consistent mean number- and volume-weighted core radii of Rn = 2.76 (6) nm and Rv = 3.20 (4) nm, respectively. The corresponding widths of the lognormal radius distribution of the particles were σn = 0.65 (1) nm and σv = 0.71 (1) nm. The particle concentration determined using this method was 3.0 (4) g l−1 or 4.2 (7) × 10−6 mol l−1. These results are affected slightly by the choice of data evaluation procedure, but not by the instruments: the participating laboratories at synchrotron SAXS beamlines, commercial and in-house-designed instruments were all able to provide highly consistent data. This demonstrates that SAXS is a suitable method for revealing particle size distributions in the sub-20 nm region (at minimum), out of reach for most other analytical methods. KW - SAXS KW - Small-angle X-ray scattering KW - Silver nanoparticles PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-422800 DO - https://doi.org/10.1107/S160057671701010X SN - 1600-5767 VL - 50 IS - 5 SP - 1280 EP - 1288 PB - (IUCr) International Union of Crystallography AN - OPUS4-42280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Novel approach to image hydrogen distribution and related phase transformation in duplex stainless steels at the sub-micron scale N2 - The effect of electrochemical charging of hydrogen on the structure of a lean duplex stainless steel LDX 2101® (EN 1.4162, UNS S32101) was examined by both Time-of-Flight secondary ion mass spectrometry and electron back-scatter diffraction. The goal is to correlate hydrogen concentration and induced structural changes. Chemical and structural characterizations were done for the same region at the sample's surface with sub-micron spatial resolution. Regions of interest were varying in size between 50 × 50 μm and 100 × 100 μm. The results show a phase transformation of austenite to mainly a defect-rich BCC and scarcely a HCP phase. The phase transformation occurred in deuterium rich regions in the austenite. KW - Time-of-flight secondary ion mass spectrometry KW - ToF-SIMS KW - Electron backscatter diffraction KW - EBSD KW - Hydrogen-assisted cracking KW - Data fusion KW - Lean duplex stainless steel PY - 2017 DO - https://doi.org/10.1016/j.ijhydene.2017.08.016 SN - 0360-3199 VL - 42 IS - 39 SP - 25114 EP - 25120 AN - OPUS4-42022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Carstensen, J. A1 - Bergmann, L. A1 - dos Santos, J. F. A1 - Wu, C. S. A1 - Rethmeier, Michael T1 - Numerical simulation of thermally induced residual stresses in friction stir welding of aluminum alloy 2024-T3 at different welding speeds N2 - The paper deals with a numerical finite element simulation of the residual stress evolution in friction stir welding of 6 mm thick aluminum alloy AA2024-T3. The transient thermal field during the welding process was calculated with the commercial code COMSOL Multiphysics 5.0. Therefore, a thermal-pseudo-mechanical (TPM) heat source was implemented. A subsequent mechanical simulation was performed with varying hardening models for different welding speeds of 60 and 300 mm/min. The influence of softening of the material, which was due to hardening precipitation dissolution associated to the heating, was also investigated. Experiments in terms of thermocouple measurements as well as Vickers hardness and X-ray measurements of the residual stresses were conducted and compared to numerically obtained results. A qualitatively as well as quantitatively good agreement was found for different applied welding speeds. KW - Friction stir welding KW - Residual stress KW - Finite element simulation KW - Thermal softening KW - Aluminum alloy 2024-T3 PY - 2017 DO - https://doi.org/10.1007/s00170-016-9793-8 SN - 0268-3768 SN - 1433-3015 VL - 91 SP - 1443 EP - 1452 PB - Springer CY - London AN - OPUS4-40511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lehmann, Jens A1 - Leonhard, H. T1 - Oberflächendetektive im Praxiseinsatz - Schnelltest auf Korrosionsgefahr an nichtrostenden Stählen N2 - Die Passivschicht von Behältern und Rohrsystemen aus nichtrostendem Stahl ist nicht nur durch den rauen Industriealltag gefährdet. Schon im Neuzustand können Schäden entstehen, etwa durch Schleifvorgänge oder ungenügende Entfernung von Anlauffarben. TÜV SÜD Chemie Service beteiligte sich an der Prüfung eines von der BAM entwickelten Schnelltests. Das Korropad-Verfahren liefert in nur 15 Minuten eine verlässliche Aussage zum Zustand der Passivschicht. KW - Nichtrostender Stahl KW - Korrosionsschnelltest KW - KorroPad KW - Passivschicht PY - 2017 SN - ISSN 0009-2800 VL - 50. Jahrgang IS - 10-2017 SP - 34 EP - 35 PB - Konradin-Verlag Robert Kohlhammer GmbH CY - Leinfelden-Echterdingen AN - OPUS4-42735 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Optimization of welding loads with narrow groove and application of modified spray arc process N2 - Current efforts for lightweight design result in a growing application of high-strength fine-grained structural steel in modern constructions, e.g. mobile cranes, with yield strength from 960 MPa. The design of welded structures and welding processes becomes more challenging with increasing material strength and elastic ratios. High residual stresses are able to diminish lifetime, load capacity and component safety and should be avoided. Recent analyses have shown strong influences of heat control and restraint of the weld due to arising reaction stresses, superimposing with local residual welding stresses. Modern inverter technologies allowed the development of numerous modified spray arc processes driven by power source manufacturers, which provide virtually similar features and several benefits, enabling welding of narrower seams with reduced weld volumes and total heat inputs. This research focuses on welding loads due to modified weld seams. The global reaction forces and moments and their superposition with local residual stresses in welded components due to external shrinkage restraints were investigated using a special testing facility and XRD. The restraint intensity, weld seam geometry and welding process were varied for statistical evaluations of resulting welding loads. When welding under restraint, a reduction of the weld seam volume causes significantly lower reaction stress levels. KW - Residual stresses KW - MAG welding KW - Restraint KW - High-strength steels KW - Process parameters PY - 2017 DO - https://doi.org/10.1007/s40194-017-0484-3 SN - 1878-6669 SN - 0043-2288 VL - 61 IS - 6 SP - 1077 EP - 1087 PB - Springer CY - Berlin Heidelberg AN - OPUS4-41071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Evsevleev, Sergei A1 - Müller, Bernd R. A1 - Osenberg, Markus A1 - Manke, Ingo A1 - Hentschel, Manfred P. A1 - Bruno, Giovanni T1 - Optimizing the visibility of X-ray phase grating interferometry N2 - The performance of grating interferometers coming up now for Imaging interfaces within materials depends on the efficiency (visibility) of their main component, namely the phase grating. Therefore, experiments with monochromatic synchrotron radiation and corresponding simulations are carried out. The visibility of a Phase grating is optimized by different photon energies, varying detector to grating distances and continuous rotation of the phase grating about the grid lines. Such kind of rotation changes the projected grating shapes, and thereby the distribution profiles of phase shifts. This yields higher visibilities than derived from ideal rectangular shapes. By continuous grating rotation and variation of the propagation distance, we achieve 2D visibility maps. Such maps provide the visibility for a certain combination of grating orientation and detector position. Optimum visibilities occur at considerably smaller distances than in the standard setup. KW - Synchrotron, BAMline KW - Talbot-Lau interferometer KW - X-ray imaging KW - X-ray refraction KW - Grating interferometry KW - X-ray phase contrast PY - 2017 DO - https://doi.org/10.3139/120.111097 SN - 0025-5300 VL - 59 IS - 11-12 SP - 974 EP - 980 PB - Hanser Verlag AN - OPUS4-42955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Moeck, P. A1 - Volz, K. A1 - Neumann, W. T1 - Orientation relationships of Mn0.75Ga0.25As crystallites on and within GaAs determined by scanning nano beam electron diffraction N2 - Mn0.75Ga0.25As crystallites, partially embedded on and fully embedded within a single crystalline matrix of GaAs formed during metal organic vapor phase epitaxy (MOVPE) of Mn-rich (Mn,Ga)As on (001) oriented GaAs wafers. Phase and orientation analysis of these crystallites were performed with scanning nano beam electron diffraction (SNBED). The investigation of plan-view specimens using a liquid nitrogen cooling stage enabled the phase and orientation analysis of partially embedded ferromagnetic a-phase particles. In all specimens the following two orientation relationships (O) between the a-phase particles and the GaAs matrix were determined: O1: [1-2.0] Mn0.75Ga0.25As || [110] GaAs and [10.2] Mn0.75Ga0.25As || [-110] GaAs O2: [10.2] Mn0.75Ga0.25As || [110] GaAs and [1-2.0] Mn0.75Ga0.25As || [-110] GaAs. The study of cross-sectional specimens enabled the analysis of fully embedded crystallites. It could be unambiguously detected that a fully embedded crystallite has the structure of the atomically ordered monoclinic β' phase. The β' phase crystallite consists of two domains which are related in twin positions to each other. The orientation relations of the different particles are illustrated by color coded stereographic projections. KW - (Mn,Ga)As crystallites KW - Scanning nano beam electron diffraction KW - Crystal phase determination KW - Orientation mapping KW - STEM/TEM imaging PY - 2017 DO - https://doi.org/10.1002/crat.201600261 SN - 1521-4079 SN - 0232-1300 VL - 52 IS - 1, Special Issue: Anniversary Issue: 50 Years of Crystal Research & Technology SP - 138 EP - 145 PB - Wiley AN - OPUS4-38939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Gorris, H.H. T1 - Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies N2 - Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been the Focus of many Research activities in materials and life sciences in the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. To fully exploit the application potential of These facinating nanomaterials, a number of challenges have to be overcome, such as the low brightness, particularly of small UCNPs, and the reliable quantification of the excitation-power-density-dependent upconversion luminescence. In this series of critical Reviews, recent developments in the design, Synthesis, optical-spectroscopic characterization, and application of UCNPs are presented with Special Focus on bioanalysis and the life sciences. Here we guide the reader from the Synthesis of UCNPs to different concepts to enhance their luminescence, including the required optical-spectroscopic assessment to quantify material Performance; surface modification strategies and bioanalytical applications as well as selected examples of the use of UCNPs as reporters in different Assay formats are addressed in part II. Future Trends and challenges in the field of upconversion are discussed with Special emphasis on UCNP Synthesis and material characterization, particularly quantitative luminescence studies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield PY - 2017 DO - https://doi.org/10.1007/s00216-017-0499-z SN - 1618-2650 SN - 1618-2642 VL - 409 IS - 25 SP - 5855 EP - 5874 PB - Springer AN - OPUS4-41665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asadujjaman, Asad A1 - Kent, B. A1 - Bertin, Annabelle T1 - Phase transition and aggregation behaviour of an UCST-type copolymer poly(acrylamide-coacrylonitrile) in water: effect of acrylonitrile content, concentration in solution, copolymer chain length and presence of electrolyte N2 - An UCST-type copolymer of acrylamide (AAm) and acrylonitrile (AN) (poly(AAm-co-AN)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization and its temperature-induced phase transition and aggregation behaviour studied by turbidimetry, static and dynamic light scattering, small angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM) measurements. The phase transition temperature was found to increase with increasing AN content in the copolymer, concentration of the solutions and copolymer chain length. A significant effect was observed onto the phase transition temperature by addition of different electrolytes into the copolymer solution. The copolymer chains were aggregated below the phase transition temperature and disaggregated above it. The size of the aggregates increases with increasing AN contents and concentration of the copolymer solutions below the phase transition temperature. The copolymer chains were expanded and weekly associated in solution above the phase transition temperature. A model is proposed to explain such association–aggregation behaviour of poly(AAm-co-AN) copolymers depending on AN contents and concentration of the copolymer solutions as a function of temperature. KW - Thermoresponsive polymers KW - UCST-type copolymer PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394636 DO - https://doi.org/10.1039/c6sm02262f SN - 1744-683X SN - 1744-6848 VL - 13 IS - 3 SP - 658 EP - 669 PB - RSC AN - OPUS4-39463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mull, Birte A1 - Möhlmann, L. A1 - Wilke, Olaf T1 - Photocatalytic degradation of toluene, butyl acetate and limonene under UV and visible light with titanium dioxide-graphene oxide as photocatalyst N2 - Photocatalysis is a promising technique to reduce volatile organic compounds indoors. Titanium dioxide (TiO2) is a frequently-used UV active photocatalyst. Because of the lack of UV light indoors, TiO2 has to be modified to get its working range shifted into the visible light spectrum. In this study, the photocatalytic degradation of toluene, butyl acetate and limonene was investigated under UV LED light and blue LED light in emission test chambers with catalysts either made of pure TiO2 or TiO2 modified with graphene oxide (GO). TiO2 coated with different GO amounts (0.75%–14%) were investigated to find an optimum ratio for the photocatalytic degradation of VOC in real indoor air concentrations. Most experiments were performed at a relative humidity of 0% in 20 L emission test chambers. Experiments at 40% relative humidity were done in a 1 m³ emission test chamber to determine potential byproducts. Degradation under UV LED light could be achieved for all three compounds with almost all tested catalyst samples up to more than 95%. Limonene had the highest degradation of the three selected volatile organic compounds under blue LED light with all investigated catalyst samples. KW - Photocatalysis KW - Emission test chamber KW - Volatile organic compound KW - VOC KW - Degradation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-402955 DO - https://doi.org/10.3390/environments4010009 SN - 2076-3298 VL - 4 IS - 1 SP - Article 9, 1 EP - 9 PB - MDPI CY - Basel AN - OPUS4-40295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joester, Maike A1 - Seifert, Stephan A1 - Emmerling, Franziska A1 - Kneipp, Janina T1 - Physiological influence of silica on germinating pollen as shown by Raman spectroscopy N2 - The process of silicification in plants and the biochemical effects of silica in plant tissues are largely unknown. To study the molecular changes occurring in growing cells that are exposed to higher than normal concentration of silicic acid, Raman spectra of germinating pollen grains of three species (Pinus nigra, Picea omorika, and Camellia japonica) were analyzed in a multivariate classification approach that takes into account the variation of biochemical composition due to species, plant tissue structure, and germination condition. The results of principal component analyses of the Raman spectra indicate differences in the utilization of stored lipids, a changed mobilization of storage carbohydrates in the pollen grain bodies, and altered composition and/or structure of cellulose of the developing pollen tube cell walls. These biochemical changes vary in the different species. KW - Silica KW - Raman spectroscopy KW - Principal component analysis PY - 2017 DO - https://doi.org/10.1002/jbio.201600011 SN - 1864-063X SN - 1864-0648 VL - 10 IS - 4 SP - 542 EP - 552 AN - OPUS4-40090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joseph, A. A1 - Bernardes, C. E. S. A1 - Druzhinina, A. I. A1 - Varushchenko, R. M. A1 - Nguyen, Thi Yen A1 - Emmerling, Franziska A1 - Yuan, L. A1 - Dupray, V. A1 - Coquerel, G. A1 - Minas da Piedade, M. E. T1 - Polymorphic phase transition in 4′-hydroxyacetophenone: Equilibrium temperature, kinetic barrier, and the relative stability of Z′=1 and Z′=2 forms N2 - Particularly relevant in the context of polymorphism is understanding how structural, thermodynamic, and kinetic factors dictate the stability domains of polymorphs, their tendency to interconvert through phase transitions, or their possibility to exist in metastable states. These three aspects were investigated here for two 4′-hydroxyacetophenone (HAP) polymorphs, differing in crystal system, space group, and number and conformation of molecules in the asymmetric unit. The results led to a ΔfGm°-T phase diagram highlighting the enantiotropic nature of the system and the fact that the Z′=1 polymorph is not necessarily more stable than its Z′=2 counterpart. It was also shown that the form II → form I transition is entropy driven and is likely to occur through a nucleation and growth mechanism, which does not involve intermediate phases, and is characterized by a high activation energy. Finally, although it has been noted that conflicts between hydrogen bond formation and close packing are usually behind exceptions from the hypothesis of Z′=1 forms being more stable than their higher Z′ analogues, in this case, the HAP polymorph with stronger hydrogen bonds (Z′=2) is also the one with higher density. KW - Polymorphism KW - Polymorphic transition KW - 4'-hydroxyacetophenone PY - 2017 DO - https://doi.org/10.1021/acs.cgd.6b01876 SN - 1528-7483 SN - 1528-7505 VL - 17 IS - 4 SP - 1918 EP - 1932 PB - ACS AN - OPUS4-40167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Potential of martensitic stainless steel X5CrNiCuNb 16-4 as pipe steel in corrosive CCS environment N2 - Pipe steels suitable for carbon capture and storage technology (CCS) require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). X5CrNiCuNb16-4 has been proven to be sufficient resistant in corrosive environments, but shows rather unusual corrosion behaviour in CCS environment. Therefore differently heat treated coupons of 1.4542 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. Additionally fatigue tests were performed via push-pull tests with a series of 30 specimens was tested at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). Best corrosion resistance in the liquid phase is achieved via normalizing prior to exposure and hardening+tempering at 670 °C leads to lowest corrosion rates in the supercritical phase. With no regard to atmosphere discontinuously ellipsoidal surface corrosion regions appear after exposure of 4000 h and more. The endurance limit of X5CrNiCuNb16-4 measured in air is reduced by more than 50% when exposed to CCS environment (maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa) The scatter range TN = 1:34 is disproportionately large contributing to an overall unusual corrosion behaviour. KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment KW - Fatigue KW - Endurance limit PY - 2017 DO - https://doi.org/10.18178/ijesd.2017.8.7.998 SN - 2010-0264 VL - 8 IS - 7 SP - 466 EP - 473 AN - OPUS4-41863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mirtschin, Nikolaus A1 - Pretsch, T. T1 - Programming of one- and two-step stress recovery in a poly(ester urethane) N2 - This work demonstrates that phase-segregated poly(ester urethane) (PEU) with switching segments of crystallizable poly(1,4-butylene adipate) (PBA) can be programmed to generate two separate stress recovery events upon heating under constant strain conditions. For programming, two elongations are applied at different temperatures, followed by unloading and cooling. During the adjacent heating, two-step stress recovery is triggered. The results indicate that the magnitude of the stress recovery signals corresponds to the recovery of the two deformation stresses in reverse order. As demonstrated by further experiments, twofold stress recovery can be detected as long as the elongation at higher temperature exceeds the strain level of the deformation at lower temperature. Another finding includes that varying the lower deformation temperature enables a control over the stress recovery temperature and thus the implementation of so-called “temperature-memory effects”. Moreover, exerting only one elongation during programming enables a heating-initiated one-step stress recovery close to the deformation temperature. Based on these findings, such polymers may offer new technological opportunities in the fields of active assembly when used as fastening elements and in functional clothing when utilized for compression stockings. KW - DSC KW - Mechanical properties PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-393585 DO - https://doi.org/10.3390/polym9030098 SN - 2073-4360 VL - 9 IS - 3 SP - Article 98, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-39358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juling, S. A1 - Niedzwiecka, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Selve, S. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Krause, E. A1 - Lampen, A. T1 - Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects N2 - The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment. KW - Silver nanoparticles KW - Protein KW - Small-angle X-ray scattering KW - SAXS PY - 2017 DO - https://doi.org/10.1021/acs.jproteome.7b00412 SN - 1535-3893 SN - 1535-3907 VL - 16 IS - 11 SP - 4020 EP - 4034 PB - Americal Chemical Society AN - OPUS4-42688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naresh-Kumar, G. A1 - Vilalta-Clemente, A. A1 - Jussila, H. A1 - Winkelmann, Aimo A1 - Nolze, Gert A1 - Vespucci, S. A1 - Nagarajan, S. A1 - Wilkinson, A. J. A1 - Trager-Cowan, C. T1 - Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffraction N2 - Advanced structural characterisation techniques which are rapid to use, non-destructive and structurally definitive on the nanoscale are in demand, especially for a detailed understanding of extended-defects and their influence on the properties of materials. We have applied the electron backscatter diffraction (EBSD) technique in a scanning electron microscope to non-destructively characterise and quantify antiphase domains (APDs) in GaP thin films grown on different (001)Si substrates with different offcuts. We were able to image and quantify APDs by relating the asymmetrical intensity distributions observed in the EBSD patterns acquired experimentally and comparing the same with the dynamical electron diffraction simulations. Additionally mean angular error maps were also plotted using automated cross-correlation based approaches to image APDs. Samples grown on substrates with a 4° offcut from the [110] do not show any APDs, whereas samples grown on the exactly oriented substrates contain APDs. The procedures described in our work can be adopted for characterising a wide range of other material systems possessing non-centrosymmetric point groups. KW - Polarity KW - Semiconductor KW - Antiphase boundary PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-420167 SN - 2045-2322 VL - 7 SP - Article 10916, 1 EP - 10 AN - OPUS4-42016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miccoli, Lorenzo A1 - Müller, U. A1 - Pospisil, S. T1 - Rammed earth walls strengthened with polyester fabric strips: Experimental analysis under in-plane cyclic loading N2 - This study analyses the mechanical behaviour under pseudo-dynamic loading of structural elements built in rammed earth and strengthened with polyester fabric strips. This strengthening technique was developed to exploit the strength potential of rammed earth and to solve its lack of tensile strength. For this reason, in-plane cyclic tests were carried out to investigate the shear behaviour of unstrengthened and strengthened walls. The strengthening technique requires low-tech equipment and workmanship, uses readily available, not expensive and industrially standardised materials. The experimental results were analysed in terms of stiffness degradation, energy dissipation capacity and equivalent viscous damping. Although the unstrengthened and strengthened walls confirmed a limited ductile behaviour, the findings confirm that the strengthening contributes to limit the spread of the diagonal cracks and provide an increase of strength in terms of horizontal load and displacement capacity. KW - Rammed earth KW - Pseudo-dynamic loads KW - Shear-compression tests KW - Strengthening KW - Polyester fabric strips PY - 2017 DO - https://doi.org/10.1016/j.conbuildmat.2017.05.115 IS - 149 SP - 29 EP - 36 PB - Elsevier Ltd. AN - OPUS4-40497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -