TY - JOUR A1 - Baer, Wolfram A1 - Wossidlo, Peter T1 - Validation of a low blow specimen technique for R-curve determination using a drop tower JF - Structural Integrity Procedia N2 - Fracture mechanics based component design requires appropriate fracture mechanics toughness data with respect to both, loading rate as well as test temperature. Taking high-rate loading into account such as with accidental scenarios, different standards such as ASTM E 1820 or BS 7448-3 provide some information on dynamic fracture mechanics testing. Nevertheless, the designations differ so that a validation of the own material specific test method used for dynamic R-curve determination is mandatory. In order to address this for ductile cast iron materials an experimental method for the reliable determination of dynamic J-integral crack resistance curves at -40 °C following the multiple specimen approach has been established and validated. The experimental concept offers some additional valuable features. Single values of dynamic crack initiation toughness can be determined using a single specimen technique based on crack sensors. Furthermore, an experimentally independent method is provided according to which CTOD δ5 R-curves can be established. The focus of the present paper is on the validation of the experimental low blow technique using a drop tower test system. A drop tower test system was developed and set up to perform low blow tests at temperatures down to -40 °C. The system allows for a variation of the impact mass and height and was optimized for testing of ductile cast iron at stress intensity rates from approximately 5∙10⁴ to 3∙10⁵ MPa√ms⁻¹. This range of loading rate is characteristic for instance with crash scenarios of heavy sectioned DCI casks for radioactive materials. In order to address characteristic challenges of impact tests (test duration of microseconds up to milliseconds, inertial effects, signal oscillations), an appropriate full bridge strain gage method for the measurement of force directly on the specimen as well as a non-contact measurement of load line displacement using an optical extensometer have been developed and validated. The low blow test requires either to prevent bouncing strikes of the hammer by using the stop block technique or to catch the hammer after its first strike. Both options are not part of the experimental concept and setup which have been realized here. The paper describes investigations which have been performed in order to make sure that bouncing strikes of the hammer do not cause additional crack extension in the specimen. This is necessary to ensure a unique relation between the work done and the achieved crack extension. The investigations covered the analysis of limit loads of the specimen with respect to the measured force. The measured stiffness of the specimen was assessed and signals of crack sensors were analyzed. Furthermore, an analysis of the mechanical behavior of the loading system and the specimen by optical observation was performed. Corresponding results are discussed in the paper. It had finally been proven that additional crack extension in the specimen due to bouncing strikes of the hammer is not to be expected under the given conditions of test setup, material and loading. It can be seen as a major experimental advantage that the striker does not have to be catched after the low blow test. T2 - XXIV Italian Group of Fracture Conference CY - Urbino, Italy DA - 01.03.2017 KW - Dynamic fracture mechanics KW - R-curve KW - Low blow KW - Ductile cast iron PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-437686 DO - https://doi.org/10.1016/j.prostr.2017.04.005 SN - 2452-3216 VL - 3 SP - 25 EP - 32 AN - OPUS4-43768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -