TY - JOUR A1 - García-González, M. A1 - Blasón Gonzalez, Sergio A1 - García-García, I. A1 - Lamela-Rey, M. J. A1 - Fernández-Canteli, A. A1 - Álvarez-Arenal, Á. T1 - Optimized planning and evaluation of dental implant fatigue testing: A specific software application N2 - Mechanical complications in implant-supported fixed dental prostheses are often related to implant and prosthetic design. Although the current ISO 14801 provides a framework for the evaluation of dental implant mechanical reliability, strict adherence to it may be difficult to achieve due to the large number of test specimens which it requires as well as the fact that it does not offer any probabilistic reference for determining the endurance limit. In order to address these issues, a new software program called ProFatigue is presented as a potentially powerful tool to optimize fatigue testing of implant-supported prostheses. The present work provides a brief description of some concepts such as load, fatigue and stress-number of cycles to failure curves (S-N curves), before subsequently describing the current regulatory situation. After analyzing the two most recent versions of the ISO recommendation (from 2008 and 2016), some limitations inherent to the experimental methods which they propose are highlighted. Finally, the main advantages and instructions for the correct implementation of the ProFatigue free software are given. This software will contribute to improving the performance of fatigue testing in a more accurate and optimized way, helping researchers to gain a better understanding of the behavior of dental implants in this type of mechanical test. KW - Dental materials KW - Prostheses KW - Implants KW - Reference standards KW - Software KW - Cyclic loading KW - Fatigue KW - Lifetime KW - S-N curve KW - Staircase method PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516268 DO - https://doi.org/10.3390/biology9110372 SN - 2079-7737 VL - 9 IS - 11 SP - 372-1 EP - 372-12 PB - MDPI CY - Basel AN - OPUS4-51626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Prediction of the fatigue limit of additively manufactured metallic materials N2 - Structural alloys are largely employed in key industrial sectors and their demand is predicted to rise rapidly for the next decades. Most of these materials require a large amount of energy for extraction and manufacturing, which causes the emission of greenhouse gases and other pollutants. Therefore, strategies for improving the sustainability of structural metallic alloys are urgently needed. Additive Manufacturing (AM), in particular Laser Powder Bed Fusion (PBF-LB/M), aims to be a sustainable manufacturing process, as it allows the build-up of complex geometry in near net-shape from 3D models, while minimizing material waste and the energy required for the process and post-process treatments. Nevertheless, the application of additively manufactured parts in structural safety-relevant applications is still hindered by the poor fatigue performance. The cause of this has been mainly attributed to the presence of manufacturing defects and surface roughness. Therefore, a huge effort has been made to optimize the process parameters and to introduce post-process treatments to minimize the defect content. However, material flaws cannot be fully eliminated, but these can be considered in a damage tolerance framework for the prediction of the fatigue performance of additively manufactured metallic materials, which is essential for part design and qualification. This work aims at presenting different modelling strategies for the prediction of the fatigue limit of AM metals. Simple empirical models and more complex models based on fatigue short crack propagation are proposed. The investigated material is an AlSi10Mg alloy fabricated by PBF-LB/M and subjected to two different low-temperature heat-treatments (265°C for 1 h and 300°C for 2h). The results show that the models can provide good approximation of the fatigue limits and help in the interpretation of the scatter of fatigue data. T2 - ASTM International Conference on Advanced Manufacturing CY - Washington DC, USA DA - 30.10.2023 KW - Additive Manufacturing KW - AlSi10Mg KW - Fatigue KW - Residual stress KW - Microstructure PY - 2023 AN - OPUS4-58866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hébrard, Louis T1 - Comparison of Room and High Temperature Fatigue Behavior of a New LPBF VDM 780 Alloy N2 - The actual environmental challenges require a huge effort from all industrial sectors to reduce their emissions of greenhouse gasses and pollutants. In this context, aeronautics is deeply concerned as one of the most emissive industrial sectors (cf. EU Green Deal). The answer to this pressing challenge is complex and involves new fuels and engine concepts, new aerostructures with higher weight-savings, as well as new, energy-efficient, and sustainable manufacturing technologies and materials. Two technologies may contribute particularly to achieving the goals: (i) new and more energy-efficient processes such as additive manufacturing (AM) can be used for part production; (ii) the engine efficiency of airplanes can be significantly improved to save fuel and reduce gas emissions. The latter can be achieved by increasing the engine thermal efficiency, i.e., increasing the turbine inlet temperature. Currently, only single-crystalline cast materials are available to be used for the thermally highest-loaded parts in the gas turbine engine, i.e., the turbine blades in the high-pressure turbine just behind the combustion chamber. These materials rely on a special casting technology, although they lose these original material performances when additive manufactured. In addition, current materials suitable for metal additive manufacturing have a limited range of temperature application. Therefore, the focus is on the development of new materials targeting higher in-service operation temperatures and durability. Recently, a new Ni-based superalloy (VDM 780) has been developed to ensure microstructural stability up to 800 °C. The goal of this work is to provide a deeper understanding of the high temperature fatigue properties of this alloy. This will enable the identification of the maximum operating temperature of this alloy and assess its performance in order to establish its potential in view of a new generation of more efficient aero-engines. T2 - 11th Edition of Fatigue Design International Conference CY - Senlis, France DA - 19.11.2025 KW - Fatigue KW - Additive Manufacturing KW - Ni-based superalloy KW - High Temperature PY - 2025 AN - OPUS4-64992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Hackbarth, Andreas A1 - Berger, Georg A1 - Krüger, Jörg T1 - Mechanical stability of Ti6Al4V implant material after femtosecond laser irradiation N2 - The surface of a titanium alloy (Ti6Al4V) implant material was covered with a bioactive calcium alkali phosphate ceramic with the aim to accelerate the healing and to form a stronger bond to living bone tissue. To fix the ceramic powder we used a femtosecond laser, which causes a thin surface melting of the metal. It is a requirement to prove that the laser irradiation would not reduce the lifetime of implants. Here we present the results of mechanical stability tests, determined by the rotating bending fatigue strength of sample rods. After describing the sample surfaces and their modifications caused by the laser treatment we give evidence for an unchanged mechanical stability. This applies not only to the ceramic fixation but also to a comparatively strong laser ablation. KW - Aluminium alloys KW - Bending strength KW - Bioceramics KW - Bone KW - Calcium compounds KW - Fatigue KW - Fatigue testing KW - High-speed optical techniques KW - Laser ablation KW - Melting KW - Orthopaedics KW - Prosthetics KW - Rods (structures) KW - Surface treatment KW - Titanium alloys KW - Vanadium alloys PY - 2012 DO - https://doi.org/10.1063/1.4737576 SN - 0021-8979 SN - 1089-7550 VL - 112 IS - 2 SP - 1 EP - 5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baer, Wolfram T1 - Detection and understanding of the chunky graphite degeneration in ferritic spheroidal graphite cast iron materials with respect to fatigue N2 - CHG is very different compared to other graphite degenerations or defects; Filigree, multi-branched string-like, 3d interconnected structure; Morphology and volumetric amount of CHG cannot be accessed by stereological interpretation of 2d section data; Field-tested, technically established method to quantify CHG in components not available; Fatigue: CHG causes substantial reduction in fatigue limit and significant increase in crack growth rate; Therefore: Avoid or exclude CHG! T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ductile cast iron KW - Chunky graphite degeneration KW - Fatigue KW - Correlation microstructure to properties PY - 2020 AN - OPUS4-54409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Müller, Alexander A1 - Hickmann, Stefan T1 - Infinite life of CFRP evaluated non-destructively with X-ray-refraction topography in-situ mechanical loading N2 - Carbon Fibre Reinforced Plastics (CFRP) are more and more used in modern civil aircrafts. These days the whole fuselage is made of this material (B787; A350). Due to strict certification standards the normal in-service loading gives a low stress level compared to the static and even the fatigue strength of the material. Hence CFRP are assumed to have an infinite life. To evaluate this assumption, fatigue tests on CFRP-specimens were performed up to 108 load cycles and the first inter-fibre failure was evaluated non-destructively by accompanying Xray-refraction topography. A tensile testing machine was integrated in a small angle X-ray scattering (SAXS) setup. X-ray refraction topography was performed while the CFRP samples were tensile loaded. This non-destructive technique enables the detection of micro-cracking and inter-fibre failure especially for CFRP. For Glass Fibre Reinforced Plastic (GFRP) X-ray refraction and in-situ loading has already been successfully used. The increase of inner surfaces due to inter fibre failure was measured as a function of the stress state. Fatigue tests were performed at and below the limit of inter-fibre failure strength. State of the art is to assume the failure of the samples under cyclic loading as the fatigue life. Accompanying non-destructive X-ray refraction measurements reflects the damage state and enables to trace its evolution even if the total failure of the specimens does not occur. This investigation technique is of high interest to give the engineer a design value of infinite life which is practically often reached due to knock down factors of certification standards. Finally the infinite life was found for cyclic fatigue loaded CFRP-samples even under high inter fibre transverse and shear loading investigated up to 108 load cycles. T2 - 19th World Conference on Non-Destructive Testing CY - Munich, Germany DA - 13.06.2016 KW - CFRP KW - NDT KW - Fatigue KW - Damage evolution PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375015 UR - https://www.ndt.net/?id=19360 SN - 978-3-940283-78-8 VL - 2016 SP - 1 EP - 9 PB - DGZFP CY - Berlin AN - OPUS4-37501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Peter, Frauke T1 - Computational methods for lifetime prediction of metallic components under high-temperature fatigue N2 - The issue of service life prediction of hot metallic components subjected to cyclic loadings is addressed. Two classes of lifetime models are considered, namely, the incremental lifetime rules and the parametric models governed by the fracture mechanics concept. Examples of application to an austenitic cast iron are presented. In addition, computational techniques to accelerate the time integration of the incremental models throughout the fatigue loading history are discussed. They efficiently solve problems where a stabilized response of a component is not observed, for example due to the plastic strain which is no longer completely reversed and accumulates throughout the fatigue history. The performance of such an accelerated Integration technique is demonstrated for a finite element simulation of a viscoplastic solid under repeating loading–unloading cycles. KW - Fatigue KW - Incremental lifetime models KW - Finite element analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481215 UR - https://www.mdpi.com/2075-4701/9/4/390 DO - https://doi.org/10.3390/met9040390 SN - 2075-4701 VL - 9 IS - 4 SP - 390, 1 EP - 24 PB - mdpi CY - Basel, Switzerland AN - OPUS4-48121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Multiaxial fatigue damage of glass fiber reinforced polymers N2 - Fiber reinforced polymers (FRPs) are a well established material in lightweight applications, e.g. in automotive, aerospace or wind energy. The FRP components are subjected to multiaxial mechanical as well as hygrothermal loads. Common operation temperatures are in the range of 213 K and 373 K (-60 °C and 100 °C) at a relative humidity of 10% to 90%. In spacecraft applications, the environmental conditions are even more extreme. However, the correlation between multiaxial mechanical loading and harsh environment conditions have to-date not been investigated in detail. The project aims to investigate the fatigue behavior of FRPs dependent on multiaxial mechanical loading, temperature, and humidity. Extensive experimental testing is performed on flat plate and cylindrical tube specimens, accompanied by numerical and analytical calculations. T2 - 24. Nationales SAMPE Symposium CY - Dresden, Germany DA - 06.02.2019 KW - Composite KW - Fatigue KW - Thermomechanics KW - Distributed fiber optic sensors PY - 2019 AN - OPUS4-47335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Han, Ying A1 - Kruse, Julius A1 - Rosalie, Julian A1 - Radners, J. A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Influence of mean stress and overaging on fatigue life of aluminum alloy EN AW-2618A N2 - Fatigue tests were performed on the forged aluminum alloy EN AW-2618A in the T61 state. Different stress ratios (R = -1, R = 0.1) were selected to study the influence of mean stress on fatigue life. Two overaged states (10 h/230 ◦C, 1000 h/230 ◦C) were also tested to investigate the influence of overaging on fatigue life. Transmission electron microscopy (TEM) was used to characterize the precipitates (S-phase), which are mainly responsible for the strength of the alloy. A fractographic analysis was also performed to determine the failure mode. Overaging reduces the fatigue life compared to the T61 state. The longer the aging time, the lower the fatigue resistance. The reason is the decrease in (yield) strength, which correlates with the radius of the S-phase: the precipitate radius increases by a factor of approximately two for the overaged states compared to the initial state. The analysis of the fracture surfaces showed crack initiation occurs predominantly on the outer surface and is associated with the primary phases. KW - Aluminum alloys KW - Aging KW - Fatigue KW - Microstructure KW - Electron microscopy KW - S-Phase PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583708 DO - https://doi.org/10.1016/j.msea.2023.145660 SN - 0921-5093 VL - 886 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-58370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Bruno, Giovanni A1 - Hilgenberg, Kai T1 - Towards a Methodology for Component Design of Metallic AM Parts Subjected to Cyclic Loading N2 - The safe fatigue design of metallic components fabricated by additive manufacturing (AM) is still a largely unsolved problem. This is primarily due to (a) a significant inhomogeneity of the material properties across the component; (b) defects such as porosity and lack of fusion as well as pronounced surface roughness of the asuilt components; and (c) residual stresses, which are very often present in the as‐built parts and need to be removed by post‐fabrication treatments. Such morphological and microstructural features are very different than in conventionally manufactured parts and play a much bigger role in determining the fatigue life. The above problems require specific solutions with respect to the identification of the critical (failure) sites in AM fabricated components. Moreover, the generation of representative test specimens characterized by similar temperature cycles needs to be guaranteed if one wants to reproducibly identify the critical sites and establish fatigue assessment methods taking into account the effect of defects on crack initiation and early propagation. The latter requires fracture mechanics‐based approaches which, unlike common methodologies, cover the specific characteristics of so‐called short fatigue cracks. This paper provides a discussion of all these aspects with special focus on components manufactured by laser powder bed fusion (L‐PBF). It shows how to adapt existing solutions, identifies fields where there are still gaps, and discusses proposals for potential improvement of the damage tolerance design of L‐PBF components KW - L‐PBF KW - Fatigue KW - Fracture KW - Defects PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525822 DO - https://doi.org/10.3390/met11050709 VL - 11 IS - 5 SP - 709 PB - MDPI CY - Basel AN - OPUS4-52582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Han, Ying T1 - The influence of overaging on high cycle fatigue of Al-alloy EN AW-2618A N2 - The aluminum alloy EN AW-2618A (2618A) is a precipitation hardened high strength alloy that is used at elevated temperatures in the transportation and aerospace industries. The main alloying elements are Cu and Mg which form a coarse intermetallic primary phase (Al9FeNi) of several µm in size. This phase is responsible for the long-term high temperature creep resistance. The basic strength is due to the precipitation of the so-called S-phase (Al2CuMg) of nm-size, which is known to coarsen during service at elevated temperatures. Previous projects have characterized the alloy in terms of strength, low cycle fatigue (LCF) and creep behavior, especially at high temperatures (up to 190 °C). Both the T61 and overaged states were used. In addition, the microstructural changes associated with overaging were extensively studied and quantified microscopically [1-2]. However, data on high cycle fatigue (HCF) is still very limited. Therefore, this study [3] investigates the influence of overaging on HCF of 2618A. For this purpose, axial HCF tests were performed at room temperature on two overaged states which are aged for 10 h and 1000 h at 230 °C. Electron microscopy was used to characterize the coarsening of the S-phase from the two overaged states. Fractographic studies were also performed to investigate the influence of the primary phase on the fatigue life. T2 - MSE 2024 CY - Darmstadt, Germany DA - 24.09.2024 KW - Fatigue KW - Aluminum alloy KW - EN AW-2618A PY - 2024 AN - OPUS4-61188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Glaubitz, Steffen T1 - Influence of casting skin on fatigue lifetime of ferritic ductile cast iron N2 - The fatigue behaviour of cast iron is usually investigated on machined specimens. Components of cast iron, however, have a casting skin; therefore the investigation of the influence of the casting skin on the lifetime is of interest. To study this influence isothermal fatigue tests were carried out on heat-resisting spheroidal graphite cast iron EN GJS SiMo 4.05 in 4–point-bending set-up at 400 °C. Specimens with and without casting skin were investigated comparatively. The number of cycles to failure was significantly lower for specimens with casting skin. Metallographic investigations underline the reduction of lifetime caused by casting skin. KW - Cast iron KW - Casting skin KW - Fatigue KW - Lifetime PY - 2017 SN - 0025-5300 VL - 59 IS - 1 SP - 5 EP - 10 PB - Carl Hanser Verlag CY - München AN - OPUS4-38929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Thiele, Marc A1 - Pirskawetz, Stephan A1 - Meng, Birgit A1 - Rogge, Andreas T1 - Characterizing the Fatigue Behavior of High-Performance Concrete for Wind Energy Structures N2 - Severe mechanical fatigue conditions for worldwide proliferating windfarms are a Major challenge for high-performance concrete in towers, connecting joints and foundations of wind turbines. High-performance concrete offers potential for the application in offshore windfarms, not only regarding its good mechanical, but also chemical resistivity due to low diffusivity in the highly densified microstructure. For a more reliable fatigue assessment, monitoring based on nondestructive testing can be a valuable complement to design rules. Both approaches demand reliable experimental data, information about scalability and the development of standardized testing methods. This article presents results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung), which is a part of a joint national project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject implemented by BAM examines the fatigue behavior in dependence of size and slenderness for varying concrete strength at different stress levels. Besides fatigue strength, nondestructive testing is carried out additionally. Methods used are strain measurement and ultrasonic testing. The change of strain, stiffness and ultrasonic pulse velocity in the fatigue process is discussed. Results disclose a deeper insight into the damage process under cyclic loading of high-performance concrete and contribute to improve nondestructive monitoring. T2 - LORCENIS - Long Lasting Reinforced Concrete fpr Energy Infrastructure under Severe Operating Conditions CY - Ghent, Belgium DA - 10.09.2019 KW - Compressive Cyclic loading KW - Fatigue KW - High-strength concrete KW - Non destructive testing KW - Ultrasonic testing PY - 2019 SN - 978-9-463-88638-3 SP - 1 EP - 4 AN - OPUS4-49500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian T1 - Characterizing the Fatigue Behavior of High-Performance Concrete for Wind Energy Structures N2 - Severe mechanical fatigue conditions for worldwide proliferating windfarms are a Major challenge for high-performance concrete in towers, connecting joints and foundations of wind turbines. High-performance concrete offers potential for the application in offshore windfarms, not only regarding its good mechanical, but also chemical resistivity due to low diffusivity in the highly densified microstructure. For a more reliable fatigue assessment, monitoring based on nondestructive testing can be a valuable complement to design rules. Both approaches demand reliable experimental data, information about scalability and the development of standardized testing methods. This article presents results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung), which is a part of a joint national project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject implemented by BAM examines the fatigue behavior in dependence of size and slenderness for varying concrete strength at different stress levels. Besides fatigue strength, nondestructive testing is carried out additionally. Methods used are strain measurement and ultrasonic testing. The change of strain, stiffness and ultrasonic pulse velocity in the fatigue process is discussed. Results disclose a deeper insight into the damage process under cyclic loading of high-performance concrete and contribute to improve nondestructive monitoring. T2 - LORCENIS - Long Lasting Reinforced Concrete for Energy Infrastructue under Severe Operating Conditions CY - Gent, Belgium DA - 10.09.2019 KW - Compressive Cyclic loading KW - Fatigue KW - High-strength concrete KW - Non destructive testing KW - Ultrasonic testing PY - 2019 AN - OPUS4-49474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Assessing the safety of new technologies: Summary of Project AGIL N2 - In Additive Manufacturing everybody is talking about Free Form, Unconventional Design, Re-thinking Components, “Think out of the box”. However, there are a few outstanding question: a) What are the material properties ? They certainly differ from literature values for conventional materials; b) How about the microstructure? It is different from conventional materials. Does it stay so with ageing? How does it form? c) Do we properly take residual stress into account? We often blame them for our ignorance about failure scenarios. d) Do we apply tailored heat treatments? Very often, we follow conventional schedules… This talk describes the summary of the efforts carried out within the BAM Project AGIL. At BAM, we aimed to thoroughly investigate the microstructure and how it evolves as a function of load and temperature (service), to determine the material properties after different process and service conditions, to properly determine residual stress and the way it impacts mechanical properties and component performance, to properly quantify the impact of (unavoidable?) defects, and to determine heat treatments tailored to the process-specific material (stress relieve, microstructure homogenization etc.). The Project AGIL was and is intimately coupled with the project ProMoAM, dealing with online monitoring of AM processes. T2 - Workshop In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Mechanical properties KW - Additive manufacturing KW - Residual Stress KW - Microstructure KW - Fatigue KW - Creep PY - 2021 AN - OPUS4-52581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Han, Ying A1 - Fritsch, Tobias A1 - Hejazi, Bardia A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - X-ray computed tomography quantifies primary phases and reveals crack morphology in high-cycle fatigue of aluminum alloy EN AW-2618A N2 - Since the introduction of high-strength aluminum alloys understanding their fatigue behavior is of high interest for the structural integrity of engineering components, in this context, the alloy EN AW-2618A gains its high strength from both nanometer size precipitates and micrometer size primary phases. The latter phases are often identified as crack initiation sites. In this study, it uses a combination of synchrotron and laboratory-based X-ray computed tomography to image and quantify such primary phases and the fatigue cracks appearing in interrupted tests. Based on the gray-level differences in the synchrotron X-ray computed tomography scans, this study is able to distinguish low- and high-absorbing particles. The dominant (volume fraction >99%) high absorbing primary phase can be quantified in good agreement with results of Thermo-Calc calculations. To image the fatigue crack, laboratory X-ray computed tomography scans are performed at different tensile loads to open the crack. The results show that with an appropriate crack opening tensile load, the fatigue crack morphology can be reliably revealed. Based on these results, the influence of the primary phases on the fatigue crack initiation and propagation are discussed. KW - X-ray computed tomography KW - Fatigue KW - Aluminum KW - Primary phases PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632724 DO - https://doi.org/10.1002/adem.202500235 SN - 1527-2648 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-63272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Boller, Ch. A1 - Mueller, Bernd R. A1 - Heckel, Thomas A1 - Starke, P. A1 - Gohlke, Daniel A1 - Venkat, R. S. A1 - Bruno, Giovanni T1 - Nonlinearities based inverse approach for the characterisation of the damage evaluation process in very high cycle fatigued CFRP specimens N2 - This paper focuses on the aspect on how damage evolution processes in composite materials and structures including matrix fracture, delamination, fibre-matrix debonding, and fibre fracture can be detected by taking advantage of the material’s inherit mechanical properties. These properties can be described on the basis of non-linear mechanical phenomena measurable as an inert frequency response signal. The approach is proposed as a means for residual life structural assessment specifically in the context of VHCF. T2 - The Seventh International Conference on Very High Cycle Fatigue - VHCF7 CY - Dresden, Germany DA - 03.07.2017 KW - Composite materials KW - Damage KW - Non-destructive testing KW - Fatigue KW - Structural simulation KW - Non-linear vibration PY - 2017 VL - 2017 SP - 1 EP - 8 PB - DVM AN - OPUS4-41102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Ageing in additively manufactured metallic components: from powder to mechanical failure” an overview of the project agil N2 - An overview of the BAM funed Focus Area Materials Project "AGIL" will be presented. AGIL focussed on the stdiy of the ageing characteristics of additively manufactured austenitic stainless steel with a "powder to mechanical failure" Approach. Recent Highlights are presented and a perspective for future studies. T2 - Workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Residual stress KW - Additive Manufacturing KW - Non-destructive testing KW - Microstructure characterisation KW - Tensile testing KW - Fatigue KW - Crystal Plasticity Modelling KW - Crack propagation PY - 2019 AN - OPUS4-49823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbricht, Jürgen T1 - Cyclic loading and creep-fatigue performance of P92 N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep and oxidation resistance. The growing share of renewable energy sources in power generation forces many of these plants into more flexible operation with frequent load shifts or shutdowns. These cyclic operation profiles constitute a major lifetime issue. The present contribution reports on current findings obtained in a multidisciplinary project which combines cyclic mechanical and cyclic oxidation testing of different 9-12% Cr grades with detailed microstructural analyses. Mechanical analyses are carried out on P92 and P91 steel grades to give an overview of softening phenomena and lifetimes obtained in isothermal cyclic loading (low cycle fatigue, LCF), non-isothermal cyclic loading (thermo-mechanical fatigue, TMF), and service-like combinations of creep and fatigue periods. Complementary microstructural investigations by scanning and transmission electron microscopy plus EBSD are used for phase identification, substrate/oxide interface characterization and quantification of the microstructure evolution under cyclic conditions. T2 - 44th MPA-Seminar CY - Leinfelden/Stuttgart, Germany DA - 17.10.2018 KW - Ferritic-martensitic steels KW - Fatigue KW - Creep-fatigue PY - 2018 AN - OPUS4-47116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radners, Jan A1 - Han, Ying A1 - von Hartrott, Philipp A1 - Skrotzki, Birgit T1 - Aluminum High Temperature Fatigue N2 - The high operating temperatures of radial compressor wheels in exhaust gas turbochargers lead to a change in the original microstructure of the heat-resistant aluminum alloy EN AW-2618A (overaging). This is caused by thermal loads that are close to the age hardening temperature and can even exceed it for a short time. The aging mechanisms have been investigated together with low cycle fatigue (LCF), thermomechanical fatigue (TMF) and creep up to max. 190 °C in previous research projects. The be-havior of the alloy under high cycle fatigue (HCF) and the influence of load spectra have hardly been investigated. Since the operating temperatures of centrifugal compressors are expected to increase in the future, this research project investigated the HCF behavior at 230 °C, a test temperature significantly higher than the age hardening temperature. The objectives of the project were to establish a suitable experimental database, to understand the relevant microstructural processes, and to further develop and adapt suitable models and evaluation methods. In addition to a basic characterization of the HCF behavior in the initial condition T61, the experimental investigation program included targeted mechanical tests to isolate the influencing factors of mean stress (𝑅=−1, 𝑅=0.1), material overaging (T61, 10 h/230 °C, 1000 h/230 °C), test temperature (20 °C, 230 °C), test frequency (0.2 Hz, 20 Hz) as well as variable amplitudes. On this basis, the models and evaluation methods developed in the previous projects were adapted and further developed to reflect thermal and mechanical loads in the lifetime assessment. T2 - The FVV Transfer + Networking Event (Herbst 2023) CY - Würzburg, Germany DA - 04.10.2023 KW - Aluminum alloys KW - Fatigue KW - EN AW-2618A PY - 2023 SP - 1 EP - 30 AN - OPUS4-58562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -