TY - CONF A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Buchheim, Michaela T1 - Microstructure investigations of iron meteorites by EBSD and EDS analyses N2 - Meteorites are a unique and inspiring material for microstructural studies because if their very specific genesis. Iron meteorites have been formed under unimaginable cooling rates of a few ten Kelvins per million years so that the observable transformation of the formerly huge Fe-Ni single crystals of taenite occurred under nearly-equilibrium conditions. Octahedrites (meteorites having a Ni content between 6...15%) are characterized by ribbons of the low-temperature Fe-Ni phase kamacite separated by rims of residual taenite. This very specific feature is known as Widmanstaetten structure and has been investigated by synchrotron radiation in order to cover a higher volume fraction for a statistically relevant description of orientation relationships. However, plessite – a microstructure mainly consisting of the same phases – reflects the orientation relationship between kamacite and taenite as well. For their characterization, a scanning electron microscope is very suitable in order to investigate crystal orientations or identify phases. Despite the apparently ideal formation circumstances of iron meteorites, Ni concentration profiles prove non-equilibrium conditions. Combined EDS (energy dispersive spectroscopy) and EBSD (electron backscatter diffraction) measurements at a selected plessitic region of the Cape York iron shows that a correlation exists between Ni-concentration and the locally detected orientation relationship. T2 - 15th European Microscopy Congress CY - Manchester, UK DA - 16.09.2012 KW - Phase identification KW - Corrosion KW - Chloride KW - Dermbach PY - 2012 SP - 90 AN - OPUS4-37775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H. A1 - May, Franz A1 - Bettge, Dirk A1 - Fischer, S. A1 - Ganzer, L. A1 - Jäger, P. A1 - Kather, A. A1 - Lempp, C. A1 - Lubenau, U. T1 - Combining CO2 Streams from Different Emitters – A Challenge For Transport And Storage Infrastructure N2 - The European Directive 2009/31/EC on the geological storage of CO2 envisages an open access of CO2 streams from different emitters to a nation- or even EUwide CO2 pipeline network if CO2 stream compositions meet “reasonable minimum composition thresholds”. As of today it is not known how such “composition thresholds” may be defined and which impurity levels may be viable in practical application. To set up recommendations for criteria and respective threshold values for CO2 stream compositions, the project “CLUSTER” will investigate how a dynamic interplay – both in terms of mass fluxes and compositions – of CO2 streams from regionally clustered CO2 sources sharing a transport and storage infrastructure will impact corrosion, e.g., of pipelines and plant components, and geochemical alteration of cap rocks and reservoir rocks. In addition, the behaviour of such a highly dynamic CCS system will be considered for an overall optimization of system design including CO2 stream mixing schemes and facilities or interim CO2 storage. T2 - TCCS-8 – The 8th Trondheim Conference on CO2 Capture, Transport and Storage CY - Trondheim, Norway DA - 16.06.2015 KW - Carbon capture KW - Carbon dioxide KW - Corrosion KW - CCS PY - 2015 AN - OPUS4-47018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - Mosquera Feijoo, Maria T1 - Nucleation and growth of sulfur phases in grain boundaries N2 - Ferritic-martensitic high temperature alloys are used as building components for different power plant technologies. Depending on the type of fuel, the used power plant materials are exposed to different temperatures and reactive atmospheres containing e.g. CO2, O2, or SO2. Despite the sulfur chemistry is commonly present as an impurity in fossil or bio fuels; its role in high temperature corrosion is not entirely understood. During high temperature corrosion, high-alloyed steels often show sulfur precipitates with the ignoble alloy component(s) along grain boundaries within the base material. Sulfur precipitates are known to seriously influence the mechanical properties of the building component. In the case of VM12 and T92 steels, sulfur phases penetrate the base material along grain boundaries during the corrosion under oxyfuel atmosphere up to 20 µm within the first 960h (Fig. 1a). Figure 1a shows the oxide scale and (Cr, Mn, Fe)xSy grain boundary precipitates in the base material for a T92 steel aged for 960h under oxyfuel atmosphere. Figure 1b shows a thin oxide scale with nodules and also sulfur precipitates of (Fe, Cr)xSy along grain boundaries of the base material for a Fe13Cr model alloy aged for 24h under SO2 atmospheres. After 24h, sulfur precipitates already reached a depth of ca. 15 µm. The present work shows the corrosion behavior of Fe-Cr model alloys with Cr-contents similar to technical steels up to 13 wt%, aged under oxyfuel (27H2O/60CO2/1SO2/10N2/2O2) and SO2 atmospheres in the temperature range of 550 °C < T < 700 °C and for different time scales between 24 h < t < 960 h. During aging, the reactive gases were added when the experimental temperature was reached. To focus on the reaction of the intended elements Fe, Cr, S, and O, model alloys of high purity are used. Transport depths of sulfur and the nucleation of the precipitates are discussed for both, model alloys and technical steels. T2 - Materials Science & Engineering CY - Darmstadt, Germany DA - 27.09.2016 KW - Corrosion KW - Sulfide KW - Sulfidation PY - 2016 AN - OPUS4-37786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinemann, Steffi A1 - Babutzka, Martin A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Untersuchung des Einflusses industrieller Korundschleifprozesse auf die Korrosionsbeständigkeit nichtrostender Stähle mittels KorroPads N2 - Das Poster stellt aktuelle Eregbnisse des AiF-Vorhabens 18823 N/1 zum Einfluss von Schleifprozessen auf die Korrosionsbeständigkeit nichtrostender Stähle vor. T2 - Jahrestagung 2016 der GfKORR CY - Frankfurt/Main, Germany DA - 15.11.2016 KW - Korrosion KW - Corrosion KW - Korundschleifen KW - Corundum grinding KW - Nichtrostende Stähle KW - Stainless steels PY - 2016 AN - OPUS4-38299 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Saldabilita di lamiere in acciaio inossidabile austenico ed austeno-ferritico ad alto contenuto di manganese con processo laser N2 - Manganese alloyed stainless steels represent a cost-effective alternative to conventional CrNi- stainless steels due to strong fl uctuations of the market prices for nickel seen during the last years. In CrMnNi steels, nickel is partially replaced by lower-cost manganese and small amounts of nitrogen for stabilization of the austenitic phase. This also brings benefi ts regarding the mechanical properties, as it results in an increased material strength. Laser beam welding of such materials was investigated for direct comparison with Standard CrNi steels. Main emphasis was laid on fi nding adequate process parameters to achieve a stable welding process and obtain a good weld quality. Two different laser sources, a 4.4 kW Nd:YAG and a 5 kW CO2 laser, were used to weld 1.5 mm stainless steel sheets in continuous wave mode. A high-Mn austenitic (1.4376) and a lean duplex (1.4162) steel, as well as the standard austenitic (1.4301) and duplex (1.4362) grades were selected as test materials. Both butt and lap joint confi gurations were studied. Experiments were carried out systematically, varying the welding speed, laser power and focal point position in order to determine adequate process windows. The infl uence of the shielding gas type and fl ow rate on the process stability and the weld quality were investigated. The effects of weld edge preparation on the weld appearance and quality levels attained were also examined. The obtained welded joints were subjected to radiographic tests for detection of internal imperfections. Also a metallurgical characterization of the samples regarding the resulting phase composition or balance and hardness depending on the welding process parameters was conducted. Furthermore, tensile and potentiodynamic tests were performed to evaluate the mechanical and corrosion properties, respectively. The results provide an insight into the advantages and limitations of the laser beam welding process for joining high-manganese alloyed stainless steels. Conditions for the production of defect-free and corrosion-resistant welds having good mechanical properties could be determined. KW - Weldability KW - Austenitic stainless steels KW - Corrosion KW - CO2 lasers KW - Duplex stainless steels KW - Laser welding KW - Manganese KW - Mechanical properties KW - Shielding gases KW - YAG lasers PY - 2016 SN - 0035-6794 VL - 68 IS - 1 SP - 33 EP - 43 AN - OPUS4-38100 LA - ita AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Borehole integrity of austenitized and annealed pipe steels suitable for carbon capture and storage (CCS) N2 - Properties of pipe steels for CCS (carbon capture and storage) technology require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). The influence of austenitzing in heat treatment routines of two different injection pipe Steels (1.4034, X46Cr13 and 1.4021, X20Cr13) was evaluated. Steel coupons were austenitized at different temperatures (900- 1050 °C) for different lengths of time (30-90 min) before quenching and annealing prior to long term corrosion experiments (60°C, 100 bar, artificial brine close to a CCS-site in the Northern German Basin, Germany). In general, fewer pits are found on X46Cr13. Comparing steels with 13% chromium each the higher carbon content of X46Cr13 (0.46% C) results in a lower number of pits compared to X20Cr13 (0.20% C). It is found that neither the carbon content of the steels nor austenitizing temperature has much influence, but local corrosion behaviour is most susceptible towards austenitzing time. T2 - 2016 APCBEES Pattaya Conference CY - Pattaya, Thailand DA - 23.01.2016 KW - Heat Treatment KW - CCS KW - CO2 KW - Corrosion KW - Steel PY - 2016 AN - OPUS4-38444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinemann, Steffi A1 - Babutzka, Martin A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Optimierung industrieller Korundschleifprozesse zur Sicherstellung der Korrosionsbeständigkeit nichtrostender Stähle N2 - In dem Vortrag wird der aktuelle Stand des AiF-Vorhabens 18823 N/1 vorgestellt und die ersten Ergebnisse zum Einfluss von Schleifprozessen auf die Korrosionsbeständigkeit nichtrostender Stähle werden präsentiert. T2 - Arbeitskreissitzung der GfKORR - AK "Korrosion und Korrosionsschutz von Eisen und Stahl" CY - Duisburg, Germany DA - 14.12.2016 KW - Korrosion KW - Corrosion KW - Korundschleifen KW - Corundum grinding KW - Nichtrostende Stähle KW - Stainless steels PY - 2016 AN - OPUS4-38699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Borehole integrity of austenitized and annealed pipe steels suitable for carbon capture and storage (CCS) N2 - Properties of pipe steels for CCS (carbon capture and storage) technology require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). The influence of austenitzing in heat treatment routines of two different injection pipe steels (1.4034, X46Cr13 and 1.4021, X20Cr13) was evaluated. Steel coupons were austenitized at different temperatures (900-1050 °C) for different lengths of time (30-90 min) before quenching and annealing prior to long term corrosion experiments (60°C, 100 bar, artificial brine close to a CCS-site in the Northern German Basin, Germany). In general, fewer pits are found on X46Cr13. Comparing steels with 13% chromium each the higher carbon content of X46Cr13 (0.46% C) results in a lower number of pits compared to X20Cr13 (0.20% C). It is found that neither the carbon content of the steels nor austenitizing temperature has much influence, but local corrosion behaviour is most susceptible towards austenitzing time. T2 - 6th International Conference on Future Environment and Energy (ICFEE 2016) CY - Pattaya, Thailand DA - 23.01.2016 KW - CCS KW - CO2 KW - Corrosion KW - Steel KW - Heat treatment PY - 2016 SP - 9 EP - 14 AN - OPUS4-38980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ewert, Uwe T1 - Progress in digital industrial radiology - Part 1: Radiographic techniques-film replacement and backscatter imaging N2 - Similar to the success story of digital photography a major upheaval has been observed in digital industrial radiology. This paper is split into 3 parts: Part 1: Film Replacement and Backscatter Imaging: Computed radiography with phosphor imaging plates substitutes film applications. Digital Detector Arrays enable an extraordinary increase of contrast sensitivity in comparison to film radiography. The increased sensitivity of digital detectors enables the efficient usage for dimensional measurements and functionality tests substituting manual maintenance. The digital measurement of wall thickness and corrosion status is state of the art in petrochemical industry. Photon counting and energy discriminating detectors are applied up to 300 Kv provide increased thickness dynamic and material discrimination by synchronously acquisition of images of the high and low energy part of the spectrum. X-ray back scatter techniques have been applied in safety and security relevant applications with single sided access of source and detector. First inspections of CFRP in aerospace industry were successfully conducted with newly designed back scatter cameras. Numeric modeling is used to design X-Ray optics and inspection scenarios as well as conducting RT training. Part 2: Computed tomography (CT) Part 3: Micro Radiography and Micro CT. KW - Digital radiography KW - Computed tomography KW - Laminography KW - Imaging plates KW - Digital detector arrays KW - Photon counting detectors KW - Back scatter KW - Numeric modelling KW - CFRP KW - Welding KW - Corrosion PY - 2016 VL - 1-2 SP - 37 EP - 43 AN - OPUS4-39163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Armatys, Kamila A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Galetz, M.C. A1 - Pflumm, R. T1 - Corrosion and abrasion resistant protective coatings for biomass combustion N2 - One of the alternative renewable fuels is biomass but it is a difficult fuel because of its diversity and complexity. It can contain high percentages of K and Cl responsible for corrosion together with sand that have additionally an abrasive effect during combustion. Because of permanently extending the surface reaction due to abrasion the corrosion of the materials increases. In particular in power plants, the superheater tubes are exposed to a corrosive abrasive attack that is one of the main sources of concern. The development of new alloys for multilayer surface, which combines corrosive and abrasive resistance is therefore of high importance. Those new technical approaches must be at the same time cost-effective to be an alternative to conventional materials. The aim of the presented investigation methods is to test and develop suitable alloys for coatings for the super heater tubes of biomass power plants. First results of abrasion investigations show improved abrasion resistance compared to the multi-component reference material Alloy 625. T2 - Young Researchers Conference: Energy Efficiency & Biomass CY - Wels, Austria DA - 24.02.2016 KW - Coatings KW - Corrosion PY - 2016 AN - OPUS4-35713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Armatys, Kamila A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Pflumm, R. A1 - Galetz, M. C. T1 - Corrosion and abrasion resistant protective coatings for biomass combustion N2 - The environmental concerns about availability of fossil fuels and greenhouse gas effect increase and alternative renewable fuels for power plants are gaining significantly of importance. One of the alternative renewable fuels is biomass but it is a difficult fuel because of its diversity and complexity. It can contain high percentages of K and Cl responsible for corrosion together with sand that have additionally an abrasive effect during combustion. Because of permanently extending the surface reaction due to abrasion the corrosion of the materials increases. In particular in power plants, the superheater tubes are exposed to a corrosive abrasive attack that is one of the main sources of concern. The development of new alloys for multilayer surface, which combines corrosive and abrasive resistance is therefore of high importance. Those new technical approaches must be at the same time cost-effective to be an alternative to conventional materials. This paper presents the principle of experimental methods developed for the investigations of high temperature corrosion combined with abrasion in thermochemical processes with high hydrochloric acid concentrations like during biomass combustion. The aim of the presented investigation methods it to test and develop suitable alloys for coatings for the super heater tubes of biomass power plants. First results of abrasion investigations show improved abrasion resistance compared to the multi-component reference material Alloy 625. T2 - Young Researchers Conference: Energy Efficiency & Biomass CY - Wels, Austria DA - 24.02.2016 KW - Corrosion KW - Coatings PY - 2016 SP - 1 EP - 9 CY - Proceedings in Young Researchers Conference: Energy Efficiency & Biomass 2016 AN - OPUS4-35714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin T1 - Corrosion mechanisms of Fe-Cr modell alloys in gas atmospheres containing SO2 N2 - In Kraftwerkstechnologien verwendete ferritische Fe-Cr-Stähle sind verschiedensten Temperaturen, Prozessdrücken und aggressiven, zum Teil schwefelhaltigen Verbrennungsgasen ausgesetzt, die zu Korrosion führen. Noch ungeklärt ist die Rolle der entstehenden Sulfide in der schützenden Oxidschicht und deren Auswirkung auf die Lebensdauer der Bauteile. Unsere Arbeit zeigt Korrosionsmechanismen ausgewählter Fe-Cr-Modelllegierungen unter Ar-SO2 Atmosphäre für verschiedene Zeitskalen. Der Focus dabei liegt auf Kurzzeitexperimenten (12h ≤ t ≤ 250h), um die initialen Stadien der Schwefelkorrosion zu untersuchen. T2 - Sektionstreffen der DMG Deutsche Mineralogische Gesellschaft CY - Bad Windsheim, Germany DA - 24.02.2016 KW - Fe-Cr Modell Alloys KW - Fe-Cr Modelllegierungen KW - Diffusion KW - Korrosion KW - Diffusion KW - Corrosion PY - 2016 AN - OPUS4-35388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa e Silva, A. A1 - Coelho, D. A1 - Kranzmann, Axel A1 - Rizzo, Fernando T1 - Simulation of Fe-Cr-X Alloy Exposed to an Oxyfuel Combustion Atmosphere at 600°C N2 - In coal-fired power plants using oxyfuel combustion process with carbon capture and sequestration, instead of air, a mixture of oxygen and recirculated flue gas is injected in the boiler. A series of steels were exposed to CO2-SO2-Ar-H2O gas mixtures at 600 °C for 1000 h to compare their high temperature corrosion behavior. During the corrosion process, carburization, decarburization and recrystallization were observed underneath the oxide scale depending on the gas mixture and alloy composition. The conditions that lead to carburization are not yet completely understood, but decarburization can be simulated using thermodynamic and kinetic models. In this work, the results of these simulations are compared with measured values for one of the alloys that displayed a decarburized region. Since the mobility of carbon in the scale is not known, two strategies were adopted: simulation of alloy-atmosphere contact; and estimation of the carbon flux to produce the observed decarburization. The second approach might give an insight on how permeable to carbon the scale is. KW - CALPHAD approach KW - Corrosion KW - Decarburization KW - DICTRA modeling KW - Experimental kinetics PY - 2016 DO - https://doi.org/10.1007/s11669-015-0421-3 SN - 1547-7037 VL - 37 IS - 1 SP - 19 EP - 24 PB - ASTM International AN - OPUS4-50612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Carrillo Salgado, Irene A1 - Le, Quynh Hoa T1 - Corrosion stability of piping steels in a circulating supercritical impure CO2 environment N2 - In supercritical impure CO2 (worst case scenario) highly alloyed Steels tend to pitting corrosion; iron and carbon steel tend to General corrosion, however, with low corrosion rates (< 0.1 mm/a) T2 - Kolloquium Uni Potsdam CY - Potsdam, Germany DA - 18.3.2016 KW - CCS KW - CO2 KW - Corrosion PY - 2016 AN - OPUS4-36990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steels caused by impurities: roles of each impure components and benchmarks N2 - Carbon Capture, Utilization and Storage (CCUS) has been proposed as a promising technology for the mitigation of CO2 emissions into the atmosphere from fossil-fuel-operated power generation plants. As the reliability and cost effectiveness of the pipeline transport network is crucial to the overall operability and resilience of the CCUS system, it is vital to realize the possible corrosion risks of the employed pipeline steels corresponding to the impurity level of the gas source. Recent studies have shown that even the high alloyed materials might be susceptible to general and/or localized corrosion by the condensates forming from the impurities such as SOx, NOx, CO, O2 and water [1]. Up to now, however, there is no regulation procedure which defines the maximum acceptable level of impurities and the combination of them for each employed pipeline steels. Herein, systematic experiment series were conducted by mixing pure CO2 gas with varying concentration of each impurity and with the varying combination of them. Each time, the mixture was then fed (1 L/min) into the reactor containing 12 specimens for 120-600 h at 5°C (to simulate the sub-level pipeline transport). The resulted condensate was collected and analyzed by ionic chromatography and atomic absorption spectroscopy to determine the chemical composition. In this study, the “worst-case scenario” gas mixture, containing 2.5 % H2O, 1.8 % O2, 1000 ppm NO2, and 220 ppm SO2 as impurities, resulted in the condensate containing H2SO4 0.114 M and HNO3 0.0184 M (pH 2.13). This “original” condensate was then re-produced to carry out exposure tests and electrochemical characterization including corrosion potentials and impedance spectroscopy in CO2 saturated condition for 7-14 days at the same temperature. The corrosion rate was also measured by mass loss method. We can conclude that, at the initial stage, HNO3 plays the dominant role in Fe dissolution process, while H2SO4 is responsible for the pit initiation followed by pitting corrosion. Future studies will be focused on the combination effect from the impurities and the exposure test under the regularly changing condensate to mimic the real CO2 pipeline system. T2 - Eurocorr 2016 CY - Montpellier, France DA - 11.09.2016 KW - Carbon capture utilization KW - CO2 KW - Pipeline transport KW - Condensation KW - Corrosion PY - 2016 SP - paper 69810, 1 EP - 2 PB - EFC CY - Montpellier AN - OPUS4-37747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steels caused by impurities: Roles of each impure components and benchmarks N2 - Carbon Capture, Utilization and Storage (CCUS) has been proposed as a promising technology for the mitigation of CO2 emissions into the atmosphere from fossil-fuel- operated power generation plants. As the reliability and cost effectiveness of the Pipeline transport network is crucial to the Overall operability and resilience of the CCUS system, it is vital to realize the possible corrosion risks of the employed Pipeline steels corresponding to the impurity Level of the gas source. Recent studies have shown that even the high alloyed materials might be susceptible to General and/or localized corrosion by the condensates forming from the impurities such as SOx, NOx, CO, O2 and water. Up to now, however, there is no regulation procedure which defines the maximum acceptable level of impurities and the combination of them for each employed pipeline steels. Herein, systematic experiment series were conducted by mixing pure CO2 gas with varying concentration of each impurity and with the varying combination of them. Each time, the mixture was then fed (1 L/min) into the reactor containing 12 specimens for 120-600 h at 5°C (to simulate the sub-level Pipeline transport). The resulted condensate was collected and analyzed by ionic chromatography and atomic Absorption spectroscopy to determine the chemical composition. In this study, the “worstcase scenario” gas mixture, containing 2.5 % H2O, 1.8 % O2, 1000 ppm NO2, and 220 ppm SO2 as impurities, resulted in the condensate containing H2SO4 0.114 M and HNO3 0.0184 M (pH 2.13). This “original” condensate was then reproduced to carry out exposure tests and electrochemical characterization including corrosion potentials and impedance spectroscopy in CO2 saturated condition for 7-14 days at the same temperature. The corrosion rate was also measured by mass loss method. We can conclude that, at the initial stage, HNO3 plays the dominant role in Fe dissolution process, while H2SO4 is responsible for the pit initiation followed by pitting corrosion. Future studies will be focused on the combination effect from the impurities and the exposure test under the regularly changing condensate to mimic the real CO2 pipeline system. T2 - Eurocorr 2016 CY - Montpellier, France DA - 11.09.2016 KW - Pipeline transport KW - Condensation KW - Corrosion KW - Carbon capture utilization KW - CO2 PY - 2016 AN - OPUS4-37752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Menneken, Martina A1 - Stephan-Scherb, C. T1 - Early oxidation and sulfidation of high temprature alloys: An EDXRD in-situ study N2 - P92 is one of the important steels for super heater tubes used in combustion plants. However, in fossil fuel fired environments the formation of oxides and sulfides are challenging the material. To understand early corrosion mechanisms, which are important for process prediction, high temperature in-situ ageing experiments of Fe-Cr-Mn alloys in SO2 and SO2+H2O atmosphere were performed, applying energy dispersive X-ray diffraction (EDXRD) analysis. T2 - Bessy usermeeting CY - Berlin, Germany DA - 05.12.2017 KW - Corrosion KW - In-situ KW - EDXRD PY - 2017 AN - OPUS4-45368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - Kranzmann, Axel A1 - Stephan-Scherb, Christiane T1 - Real time investigation of high temperature corrosion of ferritic alloys in SO2-gas N2 - The ageing of Fe-Cr model alloys in 0.5 % SO2 and 99.5 % Ar atmosphere was investigated to aim in a fundamental and systematic analysis of the combined oxidation and sulfidation mechanism. The crystallization and reaction paths for oxide and sulfide formation were followed in-situ by energy dispersive X-ray diffraction (EDXRD) in an early stage of corrosion (30 s – 24 h). For this technique, high energetic white synchrotron X-ray radiation (10-100 keV) was used as radiation source. Diffraction pattern were collected continuously in an early stage of corrosion up to 24 h during the complete ageing experiment. The crystalline phases, growing on top of the coupons, were identified directly via their specific dhkl values. The evolution of the extracted integral intensities of specific reflections of the corrosion products as a function of time access direct information about the kinetics of the nucleation and growth. The results presented here show for iron with 2 wt% Cr wuestite formation first. Wuestite vanishes after 10 min of reaction only and magnetite and hematite appear. Magnetite formation proceeds simultaneously with sulfide formation. Sulfides growth proceeds after an incubation time, which differs for low alloyed (2 wt% Cr) and high alloyed (9 wt% Cr) material. T2 - EUROCORR CY - Prague, Czech Republic DA - 03.09.2017 KW - In situ KW - Diffraction KW - Corrosion PY - 2017 SP - 79746 AN - OPUS4-44708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Nützmann, Kathin A1 - Kranzmann, Axel T1 - Real Time Investigation of High Temperature Corrosion of Ferritic Alloys in SO2-Gas N2 - The ageing of Fe-Cr model alloys in 0.5 % SO2 and 99.5 % Ar atmosphere was investigated to aim in a fundamental and systematic analysis of the combined oxidation and sulfidation mechanism. The crystallization and reaction paths for oxide and sulfide formation were followed in-situ by energy dispersive X-ray diffraction (EDXRD) in an early stage of corrosion (30 s – 24 h). For this technique, high energetic white synchrotron X-ray radiation (10-100 keV) was used as radiation source. Diffraction pattern were collected continuously in an early stage of corrosion up to 24 h during the complete ageing experiment. The crystalline phases, growing on top of the coupons, were identified directly via their specific dhkl values. The evolution of the extracted integral intensities of specific reflections of the corrosion products as a function of time access direct information about the kinetics of the nucleation and growth. The results presented here show for iron with 2 wt% Cr wuestite formation first. Wuestite vanishes after 10 min of reaction only and magnetite and hematite appear. Magnetite formation proceeds simultaneously with sulfide formation. Sulfides growth proceeds after an incubation time, which differs for low alloyed (2 wt% Cr) and high alloyed (9 wt% Cr) material. T2 - 20th International Corrosion Congress EUROCORR CY - Prague, Czech Republic DA - 03.09.2017 KW - Diffraction KW - In situ KW - Corrosion PY - 2017 AN - OPUS4-44709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Nützmann, Kathrin T1 - Real time observation of crystallization and growth of corrosion products by energy dispersive X-ray diffraction N2 - Ferritic-martensitic high temperature alloys are widely used as boiler tube and heat exchanger materials in combustion based power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres which lead to a change of the material properties and a further degradation of the material. To date corrosion analytics mainly proceeds via the use of various microscopic techniques and the analysis of the corrosion products after the reaction is completed. Comprehensive efforts have been made to study high temperature corrosion by the use of environmental SEM’s or in-situ TEM technologies. The here presented work will show a different approach to study high temperature gas corrosion in a multiple gas atmosphere by energy dispersive X-ray diffraction (EDXRD). For this technique high energetic white X-ray radiation (10-100 keV) was used as radiation source instead of conventional monochromatic radiation. It enables us to study crystallization procedures on short and medium time scales (1 min < t < 24 h) and the collection of Bragg-Signals of the phases of interest as a function of process time. Their occurrence can directly be correlated with thermodynamic and kinetic parameters. A special designed corrosion reactor was used to combine high temperature gas corrosion experiments with the collection of diffraction patter. The crystallization and reaction paths for oxide and sulfide formation was followed in-situ on Fe-Cr and Fe-Cr-Mn model alloys in a hot SO2 containing (T=650 °C) atmosphere. T2 - Gordon Research Conference on High Temperature Corrosion and Protection of Materials CY - New London, NH, USA DA - 09.07.2017 KW - Corrosion KW - In situ diffraction KW - Crystallization PY - 2017 AN - OPUS4-44717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -