TY - JOUR A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Teichmann, F. A1 - Pries, H. A1 - Dilger, K. A1 - Rethmeier, Michael T1 - Improved degassing in laser beam welding of aluminum die casting by an electromagnetic field JF - Journal of materials processing technology N2 - The paper describes an experimental investigation of the electromagnetic porosity reduction in partial penetration laser beam welding of 6 mm thick aluminum die casting AlSi9MnMg. The Investigation reveals that the usage of an electromagnetic field leads to a significant reduction of the porosity as well as to a surface smoothing of aluminum die casting. Based on the reference case without an electromagnetic influence, the porosity area was reduced gradually up to 76%. Metallurgical pores as well as process pores were removed from the weld pool. Also the weld reinforcement was improved up to 78%. Best results were reached with a frequency of 4325 Hz and a magnetic flux density of 348 mT. Although a complete prevention of porosity was not achieved, the best weld seam reached a high quality and can be ranked in valuation group B of DIN EN ISO 13919-2:2001–12. KW - Laser beam welding KW - Die-cast aluminum KW - Porosity reduction KW - Electromagnetic influence PY - 2018 DO - https://doi.org/10.1016/j.jmatprotec.2017.10.021 SN - 0924-0136 VL - 253 SP - 51 EP - 56 PB - Elsevier CY - Amsterdam AN - OPUS4-42767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A.M. A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - Comparison between GTA and laser beam welding of 9%Ni steel for critical cryogenic applications JF - Journal of Materials Processing Tech. N2 - IncomparisonwithGTAweldedjoints,highertensilestrengthcomparabletothatofthebasemetalwasobtained for laser beam welded joints due to fine martensitic microstructure. Impact fracture toughness values with much lower mismatching were obtained for laser beam welded joints due to similarity in the microstructures of its weld metal and HAZ. In this case, the lower impact fracture toughness obtained (1.37J/mm2) was much higher than that of the GTA welded joints (0.78J/mm2), which was very close to the specified minimum value (≥0.75J/mm2). In contrast to other research works, the overall tensile and impact properties are influenced not only by the fusion zone microstructure but also by the size of its hardened area as well as the degree of its mechanical mismatching, as a function of the welding process. A better combination of tensile strength and impact toughness of the concerned steel welded joints is assured by autogenous laser beam welding process. KW - Impact absorbed energy KW - 9%Ni steel KW - GTAW KW - Laser beam welding KW - Fusion zone size KW - Microstructure Tensile strength PY - 2018 DO - https://doi.org/10.1016/j.jmatprotec.2018.05.023 SN - 0924-0136 IS - 261 SP - 193 EP - 201 PB - Elsevier AN - OPUS4-45776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Development of a novel optical measurement technique to investigate the hot cracking susceptibility during laser beam welding JF - Welding in the World N2 - Using a novel optical measurement technique together with the optical flow algorithm, a two-dimensional deformation analysis during welding was conducted. The presented technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Additionally, the described procedure of the optical measurement allows the real material-dependent values of critical strain and strain rate characterizing the transition to hot cracking during laser welding processes to be determined. Furthermore, the above-mentioned technique is independet on the welding process, which means, it can be also used for arc welding processes. Dependency between the external strain rate and the critical local strain and strain rate has been observed. That is to say, the critical local strain and strain rate is increased with an increase of the strain rate.Moreover, this technique allows automatic identification of the cases that can be critical for the solidification crack formation by monitoring the state of strain on the crack-sensitive region within the mushy zone. KW - Optical measurment technique KW - Hot crack KW - Critical strain KW - Laser beam welding PY - 2019 DO - https://doi.org/10.1007/s40194-018-0665-8 SN - 0043-2288 VL - 63 IS - 2 SP - 435 EP - 441 PB - Springer Berlin Heidelberg CY - Berlin AN - OPUS4-47761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartwig, Philipp A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Scheunemann, Lisa A1 - Schröder, Jörg A1 - Rethmeier, Michael T1 - A Physically Motivated Heat Source Model for Laser Beam Welding JF - Metals N2 - In this contribution, we present a physically motivated heat source model for the numerical modeling of laser beam welding processes. Since the calibration of existing heat source models, such as the conic or Goldak model, is difficult, the representation of the heat source using so-called Lamé curves has been established, relying on prior Computational Fluid Dynamics (CFD) simulations. Lamé curves, which describe the melting isotherm, are used in a subsequent finite-element (FE) simulation to define a moving Dirichlet boundary condition, which prescribes a constant temperature in the melt pool. As an alternative to this approach, we developed a physically motivated heat source model, which prescribes the heat input as a body load directly. The new model also relies on prior CFD simulations to identify the melting isotherm. We demonstrate numerical results of the new heat source model on boundary-value problems from the field of laser beam welding and compare it with the prior CFD simulation and the results of the Lamé curve model and experimental data. KW - Welding simulation KW - Heat source models KW - Laser beam welding KW - Thermal analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600899 DO - https://doi.org/10.3390/met14040430 VL - 14 IS - 4 SP - 1 EP - 26 PB - MDPI CY - Basel AN - OPUS4-60089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huo, W. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Wolter, K. T1 - Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets JF - Applied sciences N2 - The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency. KW - Convolutional neural network KW - Strain fields prediction KW - Laser beam welding KW - Solidification cracking PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570565 DO - https://doi.org/10.3390/app13052930 VL - 13 IS - 5 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A General Analytical Solution for Two-Dimensional Columnar Crystal Growth during Laser Beam Welding of Thin Steel Sheets JF - Applied Sciences N2 - A technique for calculating the main solidification parameters for a two-dimensional columnar crystal growth during complete penetration laser beam welding of thin steel sheets was developed. Given that the weld pool interface is described by Lamé curves (superellipses) within the horizontal plane of growth, general analytical solutions were derived for the geometry of the crystal axis and the corresponding growth rate and cross-sectional area of the crystal. A dimensionless analysis was performed to provide insights on the dependence of the solidification parameters on the shape and dimensions of the rear part of the weld pool boundary. The derived solutions were applied for the case of complete penetration laser beam keyhole welding of 2 mm thick 316L austenitic chromium-nickel steel sheets. It was shown that the reconstruction of the weld pool boundary with Lamé curves provides higher accuracy and flexibility compared to results obtained with elliptical functions. The validity of the proposed technique and the derived analytical solutions was backed up by a comparison of the obtained solutions to known analytical solutions and experimentally determined shapes and sizes of the crystals on the top surface of the sheet. The dimensions of the calculated crystal axis correlated well with the experimentally obtained results. KW - General analytical solutions KW - Two-dimensional solidification KW - Columnar crystal growth KW - Lamé curves KW - Laser beam welding PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576788 DO - https://doi.org/10.3390/app13106249 IS - 10 SP - 1 EP - 10 ET - 13 AN - OPUS4-57678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmier, Michael T1 - Influence of the spatial laser energy absorption on the molten pool dynamics in high-power laser beam welding JF - Journal of Laser Applications N2 - The spatial laser energy absorption inside the keyhole is decisive for the dynamic molten pool behaviors and the resultant weld properties in high-power laser beam welding (LBW). In this paper, a numerical simulation of the LBW process, considering the 3D transient heat transfer, fluid flow, and keyhole dynamics, is implemented, in which the free surface is tracked by the volume-of-fluid algorithm. The underlying laser-material interactions, i.e., the multiple reflections and Fresnel absorption, are considered by an advanced ray-tracing method based on a localized level-set strategy and a temperature-dependent absorption coefficient. The laser energy absorption is analyzed from a time-averaged point of view for a better statistical representation. It is found for the first time that a significant drop in the time-averaged laser energy absorption occurs at the focus position of the laser beam and that the rest of the keyhole region has relatively homogeneous absorbed energy. This unique absorption pattern may lead to a certain keyhole instability and have a strong correlation with the detrimental bulging and narrowing phenomena in the molten pool. The influence of different focus positions of the laser beam on the keyhole dynamics and molten pool profile is also analyzed. The obtained numerical results are compared with experimental measurements to ensure the validity of the proposed model. KW - Laser beam welding KW - Laser energy absorption KW - Molten pool KW - Keyhole dynamics KW - Numerical modeling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587531 DO - https://doi.org/10.2351/7.0001078 SN - 1042-346X VL - 35 IS - 4 SP - 1 EP - 8 PB - AIP Publishing AN - OPUS4-58753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey T1 - Influence of edge‑deposited layers on mechanical and corrosion properties of laser beam welds of 15 mm thick AISI 2205 duplex stainless steel JF - Welding in the World N2 - AISI 2205 duplex stainless steel is used in a variety of industries, including the chemical and petrochemical industries. This is due to its high tensile strength combined with good ductility and corrosion resistance. However, in laser beam welding, these properties are negatively afected by the high cooling rates typical of the welding process. The resulting higher ferrrite content in the weld metal than in the base material leads to a reduction in the ductility and corrosion resistance of the welded joint. To overcome this problem, in this study, thick plates were coated by direct energy deposition (DED) prior to laser beam welding, whereas a duplex powder mixture containing a higher nickel concentration was used as a coating material. To improve the weld quality for the proposed two-step process, a method of additional material deposition instead of conventional tack weld was investigated. The resulting welded joints showed a well-balanced austenite to ferrite ratio and their properties and microstructure were verifed by metallographic analysis, electron backscatter difraction and Charpy impact testing. Using the standard ASTM G48 test method, it was found that the corrosion resistance of the welds was improved by a factor of four in average compared to the conventionally welded joints. The resulting properties, such as good ductility and corrosion resistance, of the welds with pre-coated edges showed good agreement with those of the base metal and confrmed the proposed two-step process as a promising alternative to the conventional approaches for welding thick duplex stainless steel plates. KW - Laser metal deposition KW - Laser beam welding KW - Duplex steels PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581731 UR - https://rdcu.be/dlb6E DO - https://doi.org/10.1007/s40194-023-01567-7 SN - 0043-2288 SP - 1 EP - 12 PB - Springer AN - OPUS4-58173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, Chunliang A1 - Yan, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Phase-field simulation of the dendrite growth in aluminum alloy AA5754 during alternating current electromagnetic stirring laser beam welding JF - International Journal of Heat and Mass Transfer N2 - Electromagnetic stirring is known to promote material flow, reduce porosity, uniform elements distribution, and refine grain in laser beam welding (LBW), which enhances the applicability of LBW in various industries. In this study, a phase-field model of dendrite growth in AA5754 Al alloy electromagnetic stirring laser beam welding was established. The model considered the thermal electromagnetic Lorentz force resulting from the interaction between the electric field generated by the Seebeck effect and the magnetic field, as well as the temperature gradient and solidification rate of the solidification interface obtained from the computational fluid dynamics electromagnetic stirring LBW model. The variation rules of dendrite growth with different magnetic parameters and effects are analyzed. Comprehensively, the magnetic field promotes the solidification rate, thus promoting interfacial instability and a large magnetic flux density leads to a faster interface instability. The solidification rate as well as the temperature gradient affect the growth rate, and the accelerated growth caused by the so lidification rate with a high frequency and a large magnetic flux density effectively inhibits the slow growth caused by the temperature gradient. The thermal electromagnetic Lorentz force is the main factor for the branch increment at low frequencies, while both thermal electromagnetic Lorentz force and temperature gradient in crease the number of branches at high frequencies. The calculated average branch numbers considering various factors in the stable stage under different magnetic parameters were consistent with the results of the scanning electron microscope tests. KW - Laser beam welding KW - Electromagnetic KW - Aluminum alloys KW - Phase field method KW - Dendrite growth PY - 2024 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2023.124754 SN - 0017-9310 VL - 218 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-58489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, Chunliang A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Experimental and numerical study on grain refinement in electromagnetic assisted laser beam welding of 5754 Al alloy JF - Journal of Laser Applications N2 - Through experimental observation and auxiliary numerical simulation, this investigation studies the different types of grain refinement of 5754 aluminum alloy laser beam welding by applying a transverse oscillating magnetic field. Scanning electron microscope results have proved that the application of a magnetic field can reduce the average crystal branch width and increase its number. The interaction between the induced eddy current generated by the Seebeck effect and the applied external magnetic field produces a Lorentz force, which is important for the increase in the number of crystal branches. Based on the theory of dendrite fragmentation and the magnetic field-induced branches increment, the grain size reduction caused by the magnetic field is studied. Furthermore, the effects of the magnetic field are analyzed by combining a phase field method model and simulations of nucleation and grain growth. The grain distribution and average grain size after welding verify the reliability of the model. In addition, the introduction of a magnetic field can increase the number of periodic three-dimensional solidification patterns. In the intersection of two periods of solidification patterns, the metal can be re-melted and then re-solidified, which prevents the grains, that have been solidified and formed previously, from further growth and generates some small cellular grains in the new fusion line. The magnetic field increases the building frequency of these solidification structures and thus promotes this kind of grain refinement. KW - Laser beam welding KW - Magnetic field KW - Crystal branch development KW - Grain refinement KW - Periodic solidification pattern PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584905 DO - https://doi.org/10.2351/7.0001085 SN - 1042-346X VL - 35 IS - 4 SP - 1 EP - 10 PB - AIP Publishing AN - OPUS4-58490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Challenges in dynamic heat source modeling in high-power laser beam welding JF - Journal of Laser Applications N2 - The amount of absorbed energy in the keyhole as well as its spatial and temporal distribution is essential to model the laser beam welding process. The recoil pressure, which develops because of the evaporation process induced by the absorbed laser energy at the keyhole wall, is a key determining factor for the macroscopic flow of the molten metal in the weld pool during high-power laser beam welding. Consequently, a realistic implementation of the effect of laser radiation on the weld metal is crucial to obtain reliable and accurate simulation results. In this paper, we discuss manyfold different improvements on the laser-material interaction, namely, the ray tracing method, in the numerical simulation of the laser beam welding process. The first improvement relates to locating the exact reflection points in the ray tracing method using a so-called cosine condition in the determination algorithm for the intersection of reflected rays and the keyhole surface. A second correction refers to the numerical treatment of the Gaussian distribution of the laser beam, whose beam width is defined by a decay of the laser intensity by a factor of 1/e2, thus ignoring around 14% of the total laser beam energy. In the third step, the changes in the laser radiation distribution in the vertical direction were adapted by using different approximations for the converging and the diverging regions of the laser beam, thus mimicking the beam caustic. Finally, a virtual mesh refinement was adopted in the ray tracing routine. The obtained numerical results were validated with experimental measurements. KW - Laser beam welding KW - Laser energy distribution KW - Ray tracing KW - Numerical modeling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584748 DO - https://doi.org/10.2351/7.0001079 VL - 35 IS - 4 SP - 1 EP - 9 PB - Laser Institute of America AN - OPUS4-58474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -