TY - CONF A1 - Kruschwitz, Sabine A1 - Lorenzoni, Renata A1 - Telong, Melissa A1 - Lauinger, Robert A1 - Munsch, Sarah A1 - Schmidt, Wolfram T1 - Investigation of the hydration of clinker-reduced cementitious binders by 1H NMR N2 - In this paper, we demonstrate the value of 1H NMR relaxometry for studying the hydration of clinker-reduced, more climate-friendly cementitious binders. The results were obtained on typical CEM I cements and samples containing two different reactive agricultural ashes as well as non-reactive biochars as supplementary cementitious materials. The findings prove that time-resolved NMR measurements provide valuable additional information when combined with classical heat flow calorimetry. T2 - ISEMA Down Under 2023 CY - Brisbane, Australia DA - 25.09.2023 KW - 1H NMR relaxometry KW - Heat flow calorimetry KW - Clinker reduction, carbon emission KW - Cement KW - Hydration PY - 2023 AN - OPUS4-58569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Kanjee, J. A1 - Motukwa, G. A1 - Olonade, K. A1 - Dodoo, A. T1 - A snapshot review of future‑oriented standards for cement, admixtures, and concrete: How Africa can spearhead the implementation of green urban construction materials JF - MRS Advances N2 - The existing cement and concrete standards are not capable of making full use of the current technology capacity due to strong focus on conventional concrete and thus they are not fit for the current and future challenges of construction industry. The paper highlights shortcomings with regard to the implementation of the existing standards. It can be seen that future-oriented standards are generally required to contribute to a lower-carbon footprint of the industry. These changes are significantly more relevant in sub-Saharan Africa, due to the rapidly increasing urbanisation challenge and the enormous potentials to develop lower-carbon technologies than elsewhere in the world. KW - Future‑oriented standards KW - Green urban construction KW - Cement PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582563 DO - https://doi.org/10.1557/s43580-023-00563-9 SN - 2731-5894 VL - 4 IS - 8 SP - 557 EP - 565 PB - Springer International Publishing CY - Springer Nature Switzerland, Cham AN - OPUS4-58256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cunningham, P. R. A1 - Mezhov, Alexander A1 - Schmidt, Wolfram T1 - Revealing Value from Bioderived Polymers: Effects of Locally Sourced Polysaccharides on the Rheology of Limestone Mixtures JF - Bio-Based Building Materials N2 - Admixtures are important constituents to enhance the performance of concrete. They allow for more efficient use of binders which can mitigate negative environmental impacts from producing cement-based materials. Commonly used rheology modifying agents like polycarboxylate ethers or cellulose ethers are synthetic or semi-synthetic, respectively. This requires additional energy consumption for their production and global supply chains particularly for many developing regions, which will be large consumers of concrete in the future. However, many locally available bio-based polysaccharides could be effectively used instead. These polymers are often overlooked by engineers and scientists due to their limited distribution and inherent complexity, yet they represent an underleveraged source of precursors for admixtures. This study investigates the action mechanisms of some bio-based rheology modifying agents, i.e., acacia gum and miscanthus gum, and provides a comparison to a conventionally modified starch. The results show that the mechanism of action of these polymers is closely related to the composition of the mixture, mixing regime, and the composition of the aqueous phase. Depending on the agent, either plasticizing or stabilizing effects on rheology can be revealed. T2 - ICBBM: International Conference on Bio-Based Building Materials CY - Vienna, Austria DA - 21.06.2023 KW - Polysaccharides KW - Superplasticizers KW - Hydration KW - Cement PY - 2023 DO - https://doi.org/10.1007/978-3-031-33465-8_60 SN - 2211-0852 VL - 45 SP - 782 EP - 792 PB - Springer Nature Switzerland AG CY - Switzerland AN - OPUS4-58726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lorenzoni, Renata A1 - Cunningham, Patrick A1 - Fritsch, Tobias A1 - Schmidt, Wolfram A1 - Kruschwitz, Sabine T1 - Microstructure of biochar-based concrete: MIP, gas sorption, NMR, and μ-CT analysis N2 - The global demand for concrete is growing, and with it, its carbon footprint. Current literature proposes biochar, a product of pyrolysis, as a possible car-bon sink to reduce the carbon footprint of concrete. This work investigates the microstructure of Portland cement pastes with 0%, 5%, and 25% of the cement replaced with wood biochar, since this should influence its macro-scopic mechanical properties. MIP, gas sorption, NMR, and µ-CT were used to analyze the pore space of the three materials. The combination of these methods, each with different resolution, enables a multi-scale investigation of biochar impact on the microstructure of cement pastes. NMR confirmed that biochar can absorb moisture and, thus, reduces the effective water-to-cement ratio. MIP and gas sorption results show 0% and 5% volume re-placement have similar gel pore structure. The results from µ-CT investiga-tions suggest that biochar may reduce the formation of larger pores. The in-clusion of non-reactive porous particles such as biochar increase the porosity of the material and should act as a weakness in terms of mechanical proper-ties. Overall, this study highlights the need to carefully tailor replacement rates to control the impact of biochar on the microstructure concrete mixtures and sees a strong need for further studies on mechanical properties. T2 - 5th International Conference on Bio-Based Building Materials CY - Vienna, Austria DA - 20.06.2023 KW - Biochar KW - Microstructure KW - Cement KW - Porosity PY - 2023 AN - OPUS4-57948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -