TY - GEN A1 - Beckenbauer, T. A1 - Root, V. A1 - Radenberg, M. A1 - Nytus, N. A1 - Drewes, B. A1 - Hübner, R. A1 - Recknagel, Christoph A1 - Stöckert, U. A1 - Gottaut, C. T1 - Teilvorhaben VI-II - Optimierung der lärmtechnischen und bautechnischen Wirksamkeit und Nutzungsdauer dichter Asphaltdeckschichten N2 - Straßenverkehr stellt in Deutschland die stärkste Quelle für Lärmbelastungen dar. In 2014 wurde durch den Forschungsverbund Leiser Verkehr ein Bericht zur Situation der Lärmwirkungsforschung in Deutschland veröffentlicht, der den aktuellen Wissensstand zum Einfluss des Verkehrslärms auf die Lebensqualität und die Gesundheit der Bevölkerung dokumentiert. Verschiedene Studien belegen, dass Dauerbelastungen über 65 dB(A) die Betroffenen stark beeinträchtigen. So mindern die hohen Lärmbelastungen nicht nur die Lebensqualität, sondern sie können auch Herz-Kreislauf-Erkrankungen, Schlafstörungen, kognitive Leistungseinschränkungen und Tinnitus verursachen. Gerade wegen des stetig wachsenden Verkehrsaufkommens sind deshalb Strategien zu entwickeln, die die Bevölkerung noch wirksamer vor Straßenverkehrslärm schützen. Aus dem Verkehrsforschungsprogramm der Bundesregierung wurden seit 2001 die Verbundprojekte Leiser Straßenverkehr gefördert. In 2014 wurde das dritte und letzte Verbundprojekt erfolgreich abgeschlossen. Das Verbundprojekt Leiser Straßenverkehr 3 (LeiStra3) hatte sich als zentrales Ziel gesetzt, Maßnahmen zur Minderung des Straßenverkehrslärms in Ballungsräumen zu entwickeln, die dort aufgrund der hohen Bevölkerungsdichte besonders wirkungsvoll sind. Es wurden verschiedene Forschungsansätze verfolgt, die die Geräuschemission an der Lärmquelle nachhaltig reduzieren. Da die Geräuschemission des fließenden Verkehrs maßgeblich durch Wechselwirkungen an der Kontaktstelle von rollendem Reifen und Fahrbahn bestimmt wird, standen die Reifen-Fahrbahn-Geräusche im Fokus der Untersuchungen. Ein Schlüsselelement in LeiStra3 war die Erweiterung des Simulationsmodells SPERoN zur quantitativen Analyse und Vorhersage der Reifen-Fahrbahn-Geräusche. Systematische Analysen von experimentell aufgenommenen Geräuschspektren mit dem Modell zeigten in LeiStra3, dass neben der Anregung von Reifenschwingungen aerodynamische Effekte im Reifen-Fahrbahn-Kontakt maßgeblich an der Geräuschentstehung beteiligt sein müssen. Um diese aerodynamischen Effekte eingehend charakterisieren und kritische Größen identifizieren zu können, mussten auf einem angemieteten Testgelände Modelloberflächen mit speziellen Texturmustern hergestellt werden, die die Entstehungsmechanismen des Rollgeräusches weitgehend getrennt und unabhängig voneinander anregen. Diese Projektstudien bildeten die Grundlage für die Entwicklung eines tragfähigen physikalischen Modells zur Beschreibung der aerodynamischen Effekte. Im Ergebnis von LeiStra3 lassen sich mit SPERoN 2020 nun reale Fahrbahnoberflächen hinsichtlich ihres Einflusses auf die Reifen-Fahrbahn-Geräusche quantitativ analysieren und Designs für neuartige geräuschmindernde Fahrbahnbeläge zuverlässig synthetisieren. Darüber hinaus stellt das Modell ein leistungsfähiges Modul zur Reifenoptimierung zur Verfügung, mit dem der Einfluss der Profilierung und des Reifenaufbaus auf die Schallabstrahlung und den Rollwiderstand untersucht werden kann. Im Fokus stand dabei die Auswahl und Anwendung geeigneter numerischer Verfahren zur Verkürzung der Rechenzeiten, um ein praxistaugliches Optimierungstool bereit zu stellen. Dies ermöglicht eine effiziente Bestimmung von Schallabstrahlung und Rollwiderstand ohne aufwendigen Prototypenbau. Im Regionalverkehr treten vielfach Beschleunigungs- und Abbremsvorgänge auf, zudem werden häufig enge Kurven durchfahren. Um die nötige Traktion zu gewährleisten, müssen die Antriebsachsreifen Profile mit einem hohen Anteil an Querrillen aufweisen. Diese Blockprofile neigen zu einer starken Schwingungsanregung auf der Fahrbahn und damit zu einer höheren Geräuschemission. In LeiStra3 wurden technologische Ansätze erarbeitet, um Rollgeräusche blockprofilierter Lkw-Reifen über die gesetzlichen Grenzwerte hinaus zu reduzieren. Im Straßenversuch hat eine Entwicklungsvariante einen Schalldruckpegel von 74,4 dB(A) erreicht. Gegenüber den aktuellen Produkten wurde damit eine Geräuschreduzierung von etwa 4 bis 5 dB(A) erzielt. Diese Variante wurde etwa ein Jahr nach Projektabschluss auf dem Markt eingeführt. Darüber hinaus wurden in LeiStra3 schallabsorbierende Unterbodenverkleidungen realisiert, die das Rollgeräusch effizient absorbieren und damit den Vorbeifahrtpegel um bis zu 3 dB(A) mindern können. Mit Blick auf Elektrofahrzeuge wurden grundlegende Untersuchungen zur Reifen-Fahrbahn-Wechselwirkung unter Antriebsmoment und zur psychoakustischen Charakterisierung durchgeführt. Einen weiteren Schwerpunkt in LeiStra3 stellte die Entwicklung leiserer Fahrbahnoberflächen dar. Modellrechnungen belegen, dass die Oberflächengestalt einen starken Einfluss auf die Schwingungsanregung des Reifens und die aerodynamischen Vorgänge in der Kontaktfläche zwischen Reifen und Fahrbahn hat. Aus akustischer Sicht ist es günstig, wenn alle Profilspitzen auf einer Ebene liegen und sich plateauartige Texturen mit schluchtenförmigen Vertiefungen ausbilden. Die lärmtechnisch optimierte Asphaltdeckschicht AC D LOA stellte zu Projektbeginn eine neue Entwicklung in der Straßenbautechnik dar und greift diesen Ansatz auf. Die Deckschicht wurde auf Basis einer dichten Asphaltzusammensetzung konzipiert und zeichnet sich durch eine Korngrößenverteilung aus, die auf eine lärmtechnisch wirksame Oberflächentextur abgestimmt ist. Der erste Einbau von AC D LOA erfolgte 2007 in Düsseldorf im Bereich der kommunalen Straßen. In LeiStra3 wurde daran gearbeitet, die Verdichtungswilligkeit des Asphaltmischgutes zu verbessern. Auf diese Weise lassen sich die Dauerhaftigkeit der Deckschicht und damit ihr lärmtechnischer Nutzen erhöhen. Die Erkenntnisse flossen in die neuen „Empfehlungen für die Planung und Ausführung von lärmtechnisch optimierten Asphaltdeckschichten“ ein, die in 2015 von der Forschungsgesellschaft für Straßen- und Verkehrswesen herausgegeben wurden. Der Gussasphalt mit offenporiger Oberfläche (engl.: Porous Mastic Asphalt, PMA) zeigt ebenfalls lärmmindernde Effekte. Im Vergleich zum herkömmlichen Gussasphalt enthält der PMA einen wesentlich höheren Anteil grober Gesteinskörnung. Es entsteht eine Deckschicht, die im unteren Bereich dicht und im oberen Bereich offenporig strukturiert ist. Die akustische Wirksamkeit ergibt sich aus der günstigen Oberflächentextur und einem hohen Hohlraumgehalt. In 2009 wurden erste Erprobungsstrecken gebaut, bei denen Schallpegelmessungen nach der Statistischen Vorbeifahrtmethode eine Lärmminderungen von bis zu 3 dB(A) gegenüber dem Referenzwert zeigten. Auf Grundlage dieser Erkenntnisse wurden in LeiStra3 weiterführende Untersuchungen durchgeführt, um die Ausführungssicherheit des PMA zu erhöhen. Zu diesem Zweck wurde die Mischgutzusammensetzung optimiert und Laborverfahren zur Herstellung von praxisnahen Probekörpern für die Mischgutkonzeption entwickelt. Auf den Bundesautobahnen A 553 bei Brühl, A 3 bei Lohmar und A 5 bei Friedberg konnten Erprobungsstrecken mit verschiedenen PMA-Varianten hergestellt werden. Diese wurden hinsichtlich der Mischgut- und Einbauparameter untersucht. Außerdem wurde in LeiStra3 untersucht, inwieweit der Herstellungsprozess von Elektroofenschlacke (EOS) verbessert werden kann, um bestimmte Kornformen und Korngrößen gezielt zu erzeugen und damit einen hochwertigen Ausgangswerkstoff für den Asphaltstraßenbau zu gewinnen. Im ersten Schritt wurden dazu EOS-Körnungen hinsichtlich ihrer bautechnischen Eignung geprüft und darauf aufbauend das Potenzial verschiedener Prozessrouten bewertet. Mit einer ausgewählten EOSKörnung (EloMinit®) konnten zwei Asphaltdeckschichtvarianten konzipiert und im Mai 2014 auf einem Testfeld eingebaut werden. Die Nachgiebigkeit bestimmt neben der Oberflächentextur und der Offenporigkeit die akustischen Eigenschaften eines Fahrbahnbelags. Ein Ziel in LeiStra3 war es, Asphaltkonstruktionen durch die Nutzung der schwingungsdämpfenden Eigenschaften des Straßenoberbaus geräuschmindernd zu gestalten. Dabei wurden verschiedene Ansätze wie die Integration einer elastischen Dämpfungsschicht oder die Konzeption eines Asphaltmischgutes mit schwingungsdämpfenden Eigenschaften verfolgt. Im Bereich Betonbauweisen stand die Herstellung einer Betondecke mit offenporiger Oberfläche (COPS) im Vordergrund. Die Grundidee des Systems COPS greift die im Asphaltstraßenbau bereits erfolgreich eingesetzte Mischgutkonzipierung mit hohem Grobkornanteil und einer feinkörnigen standfesten Bindemittel-/Mörtelphase auf. Während des Einbauvorganges sinkt der feinkörnige Mörtel nach unten ab, so dass innerhalb der oberen 10 mm der Deckschicht eine offenporige Oberfläche entsteht. In Laborversuchen wurde die Betonrezeptur so eingestellt, dass ein kontrolliertes Absetzverhalten des Zementleimes erreicht wird. Die Betonrezeptur muss möglichst stabil gegenüber Einflüssen von Witterung und Einbau sein, um die vorteilhaften akustischen Eigenschaften der fertigen Betondeckschicht sicherzustellen. Im Verbundprojekt LeiStra3 haben Partner aus Wirtschaft und Wissenschaft in einer interdisziplinär angelegten Forschungsarbeit gemeinsam Lösungen erarbeitet, mit denen das Lärmminderungspotenzial von Reifen, Fahrzeug und Fahrbahn weiter ausgeschöpft werden kann. In allen Arbeitspaketen wurden zahlreiche Ergebnisse und Erkenntnisse gewonnen, die dazu beigetragen haben, die bestehende Technik zu verbessern, die Impulse zur Entwicklung neuer Technologien gesetzt haben und auf deren Basis das Technische Regelwerk fortgeschrieben wurde. KW - Innovation KW - Lärmminderung KW - Straßenbeläge PY - 2017 UR - https://bast.opus.hbz-nrw.de/frontdoor/index/index/docId/2056 N1 - Das Verbundprojekt "Leiser Straßenverkehr 3" wurde durch das Bundesministerium für Wirtschaft und Technologie unter dem Förderkennzeichen 19U10016 A-M gefördert. SP - 312 EP - 381 PB - Bundesanstalt für Straßenwesen (BASt) CY - Bergisch Gladbach AN - OPUS4-54612 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Budnik, J. A1 - Betz, T. A1 - Brameshuber, W. A1 - Fromm, A. A1 - Gerdes, A. A1 - Gerlach, J. A1 - Götz, M. A1 - Hart, R. A1 - Heese, C. A1 - Hintzen, W. A1 - Hüttl, R. A1 - Kämpfer, W. A1 - König, A. A1 - Kühner, S. A1 - Lohaus, L. A1 - Meng, Birgit A1 - Neumann, T. A1 - Remus, R. A1 - Schaab, A. A1 - Schäffel, P. A1 - Schauerte, J. A1 - Schönborn, A. A1 - Siebert, B. A1 - Stephan, D. A1 - Tebbe, H. A1 - Wagner, J.-P. ED - Siebert, B. T1 - Chemischer Angriff auf Beton - Empfehlungen zur Prüfung und Bewertung N2 - ln den letzten Jahren wurden diverse Prüfverfahren und Methoden entwickelt, um die Leistungsfähigkeit von Beton bzw. Bindemittel hinsichtlich des Widerstands gegenüber betonaggressiven Einwirkungen beurteilen zu können. Ein wesentliches Ziel von Prüfverfahren zur Beurteilung der Dauerhaftigkeit von Baustoffen ist, die im Laufe der Nutzungsdauer zu erwartenden Einwirkungen auf den Baustoff realitätsnah abzubilden. Dazu sind die Prüfparameter auf die im jeweiligen Anwendungsbereich vorherrschenden Umgebungs- und Randbedingungen anzupassen. Daneben sind auch die Bewertungskriterien individuell unter Berücksichtigung der im Einzelfall geforderten Nutzungsdauer eines Bauwerks festzulegen. Eine systematische Zuordnung von adäquaten Prüfverfahren bzw. Prüfparametem und Bewertungskriterien für die verschiedenen Anwendungsbereiche im Betonbau, in denen betonaggressive Einwirkungen auftreten, ist mit Ausnahme von Einzelfällen bislang nicht vorhanden. Daneben stellt sich in der Praxis immer wieder das Problem, das Angriffspotenzial der Umgebung eines Bauwerks (prüftechnisch) zu erfassen und zu bewerten. Der Hauptausschuss Baustofftechnik des DBV hat daher den Arbeitskreis „Chemischer Angriff auf Beton“ beauftragt, dieses Merkblatt zu erarbeiten, das auf Basis von einschlägigen Erfahrungen der Baupraxis und wissenschaftlichen Erkenntnissen Grundsätze und bewährte Methoden zur Beurteilung der Einwirkungs- und Widerstandsseite beim chemischen Angriff auf Beton aufzeigt und diesbezüglich Hinweise für verschiedene Anwendungsbereiche im Betonbau liefert. KW - Beton KW - Betonangriff KW - Dauerhaftigkeit KW - Säureangriff PY - 2017 SP - 1 EP - 65 PB - Eigenverlag Deutscher Beton- und Bautechnik-Verein e. V. CY - Berlin AN - OPUS4-44663 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Czichos, Horst A1 - Woydt, Mathias ED - Totten, George E. T1 - Introduction to tribology and tribological parameters N2 - Content: Research and Testing. Structural Parameters. Operational Parameters. Contact Parameters. Friction Parameters. Wear Parameters. Material Parameters and Selection. Appendix: Principles of General System Theory. KW - Tribology KW - Tribological parameters KW - Wear KW - Friction PY - 2017 SN - 978-1-62708-141-2 VL - 18: Friction, Lubrication, and Wear Technology SP - 2 EP - 14 CY - Materials Park, OH, USA AN - OPUS4-43589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Czichos, Horst A1 - Woydt, Mathias ED - Totten, George E. T1 - Tribological testing and presentation of data N2 - Content: Research and Testing. Machinery or Component-Level Tests. Laboratory and Specimen Testing. Laboratory Friction and Wear Tests. Investigation of Worn Surfaces. Presentation of Friction and Wear Data. Transition Diagrams. Tribomaps. Wear Data and Reliability. KW - Metals KW - Tribology KW - Friction KW - Wear PY - 2017 SN - 978-1-62708-141-2 VL - 18: Friction, Lubrication, and Wear Technology SP - 16 EP - 32 CY - Materials Park, OH, USA AN - OPUS4-43592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Daum, Werner A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Brandes, K. A1 - Kubowitz, P. ED - Curbach, M. ED - Opitz, H. ED - Scheerer, S. ED - Hampel, T. T1 - Erweiterte Strukturabbildung von Brücken mit adaptiven mathematischen Modellen zur Lösung aktueller noch ungelöster Probleme N2 - Health monitoring von größeren Strukturen erfordert die Betrachtung der gesamten Struktur, indem sowohl jener Bereich, der experimentell behandelt wird, als auch derjenige, der einer analytischen mechanischen Untersuchung unterzogen wird, in einem Gesamtzusammenhang erfasst wird. Die umfassende Behandlung des Problems gelingt dann in einer Gesamtmatrix, die im Beitrag vorgestellt wird. Auf eine Erweiterung der Methode zur Detektierung anwachsender Schädigungen wird hingewiesen. KW - Structural Health Monitoring KW - Schadensdetektion KW - Adaptives mathematisches Modell PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bsz:14-qucosa-201229 SN - 1613-6934 VL - Konstruktiver Ingenieurbau Dresden IS - 43 SP - 183 EP - 188 PB - Institut für Massivbau, TU Dresden CY - Dresden AN - OPUS4-43371 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -