TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Relation of craze to crack length during slow crack growth phenomena in high‐density polyethylene JF - Polymer Engineering & Science N2 - The craze‐crack mechanism occurring in high‐density polyethylene (HDPE) causing slow crack growth and environmental stress cracking is investigated in detail with respect to the relation of crack length and the related craze zone. This is essential for the understanding of the resulting features of the formed fracture surface and their interpretation in the context of the transition from crack propagation to ductile shear deformation. It turns out that an already formed craze zone does not inevitably result in formation of a propagating crack, but could also undergo ductile failure. For the examination, the full notch creep test (FNCT) was employed with a subsequent advanced fracture surface analysis that was performed using various imaging techniques: light microscopy, laser scanning microscopy, scanning electron microscopy, and X‐ray micro computed tomography scan. FNCT specimens were progressively damaged for increasing durations under standard test conditions applying Arkopal, the standard surfactant solution, and biodiesel as test media were used to analyze the stepwise growth of cracks and crazes. From considerations based on well‐established fracture mechanics approaches, a theoretical correlation between the length of the actual crack and the length of the preceding craze zone was established that could be evidenced and affirmed by FNCT fracture surface analysis. Moreover, the yield strength of a HDPE material exposed to a certain medium as detected by a classic tensile test was found to be the crucial value of true stress to induce the transition from crack propagation due to the craze‐crack mechanism to shear deformation during FNCT measurements. Highlights - Progress of crack formation in high‐density polyethylene is analyzed by different imaging techniques - Determined growth rates depend on distinction between craze zone and crack - The ratio of the present crack to the anteceding craze zone is validated theoretically - The transition from crack propagation to ductile shear deformation is identified - An already formed craze zone may still fail by ductile mechanisms KW - Craze-crack mechanism KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Slow crack growth (SCG) KW - X-ray computed tomography (CT) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601831 DO - https://doi.org/10.1002/pen.26698 SN - 1548-2634 VL - 64 IS - 6 SP - 2387 EP - 2403 PB - Wiley AN - OPUS4-60183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Alig, I. A1 - Böhning, Martin T1 - A phenomenological criterion for an optical assessment of PE-HD fracture surfaces obtained from FNCT JF - Polymer Testing N2 - The full-notch creep test (FNCT) is a common test method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD), e.g. for container materials. The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of PE-HD specimens under constant mechanical load in a well-defined liquid test environment. Since the craze-crack damage mechanism underlying the ESC phenomenon is associated with brittle failure, the occurrence of a predominantly brittle fracture surface is a prerequisite to consider an FNCT measurement as representative for ESC, i.e. a time to failure dominated by craze-crack propagation. The craze-crack propagation continuously reduces the effective residual cross-sectional area of the specimen during the test, which results in a corresponding increase of the effective mechanical stress. Thus, a transition to ductile shear deformation is inevitable at later stages of the test, leading usually to a pronounced central ligament. Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. An enhanced imaging analysis of FNCT fracture surfaces enables a detailed assessment of craze-crack Propagation during ESC. In this study, laser scanning microscopy (LSM) was employed to evaluate whether FNCT fracture surfaces are representative with respect to craze-crack propagation and ESC. Based on LSM height data, a phenomenological criterion is proposed to assess the validity of distinct FNCT measurements. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. Its applicability is verified on a sample basis for seven different commercial PE-HD container materials. KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Fracture surfaces KW - Optical criterion of brittleness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521012 DO - https://doi.org/10.1016/j.polymertesting.2020.107002 VL - 94 SP - 107002 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Lellinger, D. A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Crack propagation in PE-HD induced by environmental stress cracking (ESC) analyzed by several imaging techniques JF - Polymer Testing N2 - Different imaging techniques were employed to monitor Full Notch Creep Test (FNCT) experiments addressing environmental stress cracking in more detail. The FNCT is a well-established test method to assess slow crack growth and environmental stress cracking of polymer materials, especially polyethylene. The standard test procedure, as specified in ISO 16770, provides a simple comparative measure of the resistance to crack growth of a certain material based on the overall time to failure when loaded with a well-defined mechanical stress and immersed in a liquid medium promoting crack propagation. Destructive techniques which require a direct view on the free fracture surface, such as light microscopy and laser scanning microscopy, are compared to non-destructive techniques, i.e. scanning acoustic microscopy and xray micro computed tomography. All methods allow the determination of an effective crack length. Based on a series of FNCT specimens progressively damaged for varied Durations under standard test conditions, the estimation of crack propagation rates is also enabled. Despite systematic deviations related to the respective Imaging techniques, this nevertheless provides a valuable tool for the detailed evaluation of the FNCT and its further development. KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Full notch creep test (FNCT) KW - X-ray computed tomography (CT) KW - Laser scanning microscopy (LSM) KW - Scanning acoustic microscopy (SAM) PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.08.014 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 544 EP - 555 PB - Elsevier AN - OPUS4-45766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Full notch creep test (FNCT) of PE-HD – Characterization and differentiation of brittle and ductile fracture behavior during environmental stress cracking (ESC) JF - Polymer Testing N2 - The damage mechanisms slow crack growth (SCG) and environmental stress cracking (ESC), relevant for PE-HD materials are characterized based on improved full notch creep testing (FNCT) of two selected typical PE-HD materials for container applications. In this context, a distinction of the failure mechanisms as well as a categorization of involved media is suggested. Employing a novel FNCT device, elongation data were obtained in addition to conventional time-to-failure results of stress-dependent as well as temperature-dependent measurements. Changes in failure behavior, as determined by fracture surface analysis based on light microscopy (LM) and laser scanning microscopy (LSM), are correlated with FNCT results and used to introduce an additional possibility for the identification of brittle/ductile fracture behavior. KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Full notch creep test (FNCT) KW - High-density polyethylene (PE-HD) PY - 2017 DO - https://doi.org/10.1016/j.polymertesting.2017.09.043 SN - 0142-9418 SN - 1873-2348 VL - 64 SP - 156 EP - 166 PB - Elsevier CY - Amsterdam AN - OPUS4-42484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Böhning, Martin A1 - Oehler, H. A1 - Alig, I. A1 - Niebergall, Ute T1 - Environmental stress cracking of polyethylene high density (PE-HD) induced by liquid media – Validation and verification of the full-notch creep test (FNCT) T1 - Umgebungsinduzierte Spannungsrissbildung von Polyethylen- Werkstoffen hoher Dichte durch flüssige Medien – Validierung und Verifizierung des Kriechversuchs an Probekörpern mit umlaufender Kerbe JF - Materials Science & Engineering Technology N2 - The full-notch creep test (FNCT) is widely used to characterize the slow crack growth (SCG) behavior of polyolefin materials in “inert” media as well as effects of environmental stress cracking (ESC) in which the medium has decisive influence on damage mechanism and time to failure. The test is of greatest importance for pipe and blow molding types of polyethylene, high density (PE-HD). Usually the full-notch creep test is applied as a standardized testing method (ISO 16770) using a few universal liquid media, such as solutions of Arkopal N 100. In our study, selected relevant polyethylene, high density materials are investigated also in real media – practical formulations as well as representative pure chemicals – and influences of temperature and geometry of specimen and notch are explicitly addressed. Furthermore, the investigations comprise also the environmental stress cracking behavior of polyethylene, high density in media that are sorbed to a significant extent – examples are diesel and biodiesel – based on comparison with samples previously saturated with those media. Thus, also the underlying diffusion controlled sorption process has to be assessed before. The investigations were performed using a full-notch creep testing device with 12 individual sub-stations, each equipped with individual electronic stress and temperature control and continuous online monitoring of the specimen elongation. N2 - Der Kriechversuch an Probekörpern mit umlaufender Kerbe (FNCT) wird flächendeckend angewendet, um das Verhalten von Polyolefinen sowohl gegenüber langsamen Risswachstums (SCG) bei Kontakt mit „inerten“ Medien als auch gegenüber umgebungsbedingtem Spannungsrisswachstum (ESC), bei welchem das umgebende Medium entscheidenden Einfluss auf den Schädigungsmechanismus und die Standzeit hat, zu charakterisieren. Der Test ist von großer Bedeutung bei der Analyse von hochdichten Polyethylen-Typen, die als Rohr- und Blasformwerkstoffe angewendet werden – dabei besonders für Transport und Verpackung von Gefahrstoffen, aber auch für weitere Hochleistungsanwendungen. Üblicherweise wird der Kriechversuch an Probekörpern mit umlaufender Kerbe als Normmethode (ISO 16770) unter Verwendung einiger weniger universeller Modellflüssigkeiten, wie z. B. Arkopal N 100, durchgeführt. In dieser Studie werden ausgewählte, marktrelevante Polyethylen-Werkstoffe hoher Dichte in realen Medien – praktisch verwendete Gefahrgüter sowie repräsentative reine Chemikalien – untersucht und explizit die Einflüsse von Temperatur und Prüfkörper- sowie Kerbgeometrie adressiert. Weiterhin beinhalten die Untersuchungen die Analyse des umgebungsbedingten Spannungsriss-Verhaltens von Polyethylen hoher Dichte in Medien, die maßgeblich vom Werkstoff sorbiert sind – beispielsweise mit Kraftstoffen wie diesel und biodiesel – basierend auf dem Vergleich mit vorgesättigten Probekörpern. Der dabei vorliegende diffusionsgesteuerte Sorptionsprozess muss dementsprechend zuvor evaluiert werden. Alle Untersuchungen wurden mithilfe einer Kriechversuchsanlage an Probekörpern mit umlaufender Kerbe mit 12 Stationen durchgeführt, welche jeweils mit einer individuell ansteuerbaren elektronischen Spannungs- und Temperatursteuerung sowie fortwährender Online-Überwachung der Prüfkörperdehnung ausgestattet sind. KW - Full-notch creep test (FNCT) KW - Polyethylene (PE-HD) KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Biodiesel PY - 2017 DO - https://doi.org/10.1002/mawe.201700065 SN - 1521-4052 SN - 0933-5137 VL - 48 IS - 9 SP - 846 EP - 854 PB - Wiley-VCH CY - Weinheim AN - OPUS4-41885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -