TY - CONF A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Dielectric and thermal relaxation behavior of ultra-thin films of poly(vinyl methyl ether) – evidence of an adsorbed layer N2 - Despite the many controversial discussions about the nanometric confinement effect on the properties of ultra-thin films, much remain not understood and/or experimentally unproven. Here, a combination of Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) employing AC nanochip calorimetry were utilized to investigate the glassy dynamics of ultra-thin films of a low MW Poly (vinyl methyl ether) (PVME) (thicknesses: 7 nm – 160 nm). For BDS measurements, a recently developed nano-structured electrode sample arrangement is employed; where ultra-thin films are spin-coated on an ultra-flat highly conductive silicon wafer, sandwiched between a wafer with nanostructured SiO2 nano-spacers with heights between 35 nm and 70 nm. For films with thicknesses up to 50 nm, BDS measurements showed two relaxation processes, which can be analyzed for these film thicknesses in details. The process located at higher frequencies coincidence in both, its position and temperature dependence, with the -relaxation of bulk PVME and is therefore assigned to the -relaxation of a bulk-like layer. The temperature dependence of the relaxation rate of this process in independent of film thickness. This is further confirmed by the SHS investigations, which superimpose in its temperature dependence with the BDS results; independent of film thickness. The second process is located at lower frequencies, where it shows a different temperature dependence and ascribed to the relaxation of polymer segments adsorbed at the substrate. The interaction of PVME with SiO2 was further confirmed by contact angle investigations. This adsorbed layer further undergoes a confinement effect that results in a lower Vogel temperature than that of the bulk-like layer. A detailed analysis of the dielectric strengths of both processes reveals that the thickness of the adsorbed layer decreases with increasing temperature, while that of the bulk-like layer increases. As a main conclusion, BDS showed that the glassy dynamics of the bulk-like and the adsorbed layer are thickness independent, which is in agreement with the SHS results. To our knowledge, this is the first probing of the segmental dynamics of an adsorbed layer in ultrathin films. T2 - 9th International Conference on Broadband Dielectric Spectroscopy and its Applications CY - Pisa, Italy DA - 11.09.2016 KW - Ultra-thin films KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy PY - 2016 AN - OPUS4-37528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Heídari, M. A1 - von Klitzing, R. A1 - Schönhals, Andreas T1 - Unveiling the dynamics of self-assembled layers of thin films of poly(vinyl methyl ether) (PVME) by nanosized relaxation spectroscopy N2 - A combination of nanosized dielectric relaxation (BDS) and thermal spectroscopy (SHS) was utilized to characterize the dynamics of thin films of Poly(vinyl methyl ether) (PVME) (thicknesses: 7 nm – 160 nm). For the BDS measurements, a recently designed nano-structured electrode system is employed. A thin film is spin-coated on an ultra-flat highly conductive silicon wafer serving as the bottom electrode. As top electrode, a highly conductive wafer with non-conducting nanostructured SiO2 nano-spacers with heights of 35 nm or 70 nm is assembled on the bottom electrode. This procedure results in thin supported films with a free polymer/air interface. The BDS measurements show two relaxation processes, which are analyzed unambiguously for thicknesses smaller than 50 nm. The relaxation rates of both processes have different temperature dependencies. One process coincidences in its position and temperature dependence with the glassy dynamics of bulk PVME and is ascribed to the dynamic glass transition of a bulk-like layer in the middle of the film. The relaxation rates were found to be thickness independent as confirmed by SHS. Unexpectedly, the relaxation rates of the second process obey an Arrhenius-like temperature dependence. This process was not observed by SHS and was related to the constrained fluctuations in a layer, which is irreversibly adsorbed at the substrate with a heterogeneous structure. Its molecular fluctuations undergo a confinement effect resulting in the localization of the segmental dynamics. To our knowledge, this is the first report on the molecular dynamics of an adsorbed layer in thin films. KW - Broadband dielectric spectroscopy KW - AC-nanochip calorimetry KW - Nanostructured capacitors KW - Thin films PY - 2017 UR - http://pubs.acs.org/doi/pdf/10.1021/acsami.6b14404 U6 - https://doi.org/10.1021/acsami.6b14404 SN - 1944-8244 VL - 9 IS - 8 SP - 7535 EP - 7546 PB - ACS Publications CY - Washington DC AN - OPUS4-39291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Molecular dynamics of the asymmetric blend PVME/PS revisited by broadband dielectric and specific heat spectroscopy: Evidence of multiple glassy dynamics N2 - The molecular mobility of the highly asymmetric miscible blend poly(vinyl methyl ether)/polystyrene was investigated by broadband dielectric (frequency range 10^-1 Hz – 10^9 Hz) and specific heat spectroscopy (frequency range 10^1 Hz – 10^4 Hz). The dielectric spectra revealed a complex molecular dynamic behavior, where three different relaxation processes were observed. At temperatures below the glass transition temperature an α´-relaxation was found, with an Arrhenius-like temperature dependence of its relaxation rates. It is assigned to localized fluctuations of the confined PVME segments within a frozen glassy matrix dominated by PS. Above the thermal glass transition temperature two processes with a VFT behavior of their relaxation rates were detected called α1- and α2-relaxation, both originating from PVME dipoles fluctuating in PS-rich environments, however with diverse PS concentrations. The relevant length scales for the processes are assumed to be different, corresponding to the Kuhn segment length for the former relaxation and to the CRR for the latter one. The observed multiple glassy dynamics result from spatial local compositional heterogeneities on a microscopic level. Additionally, SHS investigations were performed for the first time for this system, proving an existence of a fourth relaxation process (α3-relaxation) due to the cooperative fluctuations of both PS and PVME segments. The separation between the thermal α3- and dielectric α2-relaxation increases dramatically with increasing polystyrene concentration, proving that the thermal response is dominated by PS. KW - Polymer blends KW - Dynamic heterogeneity KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy PY - 2019 U6 - https://doi.org/10.1021/acs.macromol.8b02697 SN - 0024-9297 VL - 52 IS - 4 SP - 1620 EP - 1631 PB - ACS Publications AN - OPUS4-47516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -