TY - JOUR A1 - Nolze, Gert T1 - Characterization of the fcc/bcc orientation relationship by EBSD using pole figures and variants N2 - The orientation relationship (OR) between fcc and bcc lattices are described by crystallographic fundamentals using the example of Kurdjumov-Sachs (K-S) and Nishiyama-Wassermann (N-W). Complete pole figures containing all variants will be used to distinguish even between slightly different ORs. EBSD on iron meteorites and duplex steel has been used to analyse a large number of crystal orientations with regard to a high statistical significance and a high probability to capture all variants in a single measurement. It is shown that the use of fixed OR models like K-S, N-W, Bain, Pitsch, or Greninger-Troiano does not satisfacturally reflect the observed experimental pole distributions. It is not convenient to use high-indexed lattice planes and directions to describe the small deviations from the given models. The Euler subspace representation offers a readily comprehensible tool to get an idea about the characteristic of the experimentally detected OR. KW - EBSD KW - Duplex steel KW - Iron meteorite KW - Pole figure KW - Orientation relationship PY - 2004 DO - https://doi.org/10.1515/ijmr-2004-0142 SN - 0044-3093 VL - 95 IS - 9 (85 Jahre DGM) SP - 744 EP - 755 PB - Hanser CY - München AN - OPUS4-13972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Payton, E. J. A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert T1 - Phase Identification by Image Processing of EBSD Patterns N2 - Automated electron backscatter diffraction (EBSD) is generally unable to distinguish between multiple cubic phases in a specimen without additional information, such as that obtained by simultaneous energy dispersive X-ray spectroscopy (EDS). Small particles of phases with relatively similar compositions push the limits of phase identification using simultaneous EBSD and EDS, and a mismatch exists between the spatial resolutions of these two techniques due to them having different electron interaction volumes. In a recent paper, the present authors explored using backscatter detectors mounted on top of the EBSD detector to obtain atomic number (Z) contrast images that could be used for phase segmentation in cases where the results from the EBSD and EDS signals remain ambiguous. In the present work, we show that similar information can be obtained from the raw EBSD patterns themselves at higher spatial resolution than was obtained from the backscatter detectors, with the additional advantage of having no spatial mismatch between the data collection grids. KW - Phase identification KW - Backscattered electrons KW - EBSD KW - SEM PY - 2013 DO - https://doi.org/10.1017/S143192761300620X VL - 19 IS - Suppl. 2 SP - 842 EP - 843 AN - OPUS4-37985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yukhvid, V. A1 - Gorshkov, V. A1 - Miloserdov, P. A1 - Skachkova, N. A1 - Alymov, M. I. A1 - Nolze, Gert A1 - Epishin, A. T1 - Synthesis of Molybdenum and Niobium Mono- and Binary Silicides by the Method of SHS-Metallurgy N2 - The process of self-propagating high-temperature synthesis of the Mo–Nb–Si silicides from the powder mixtures has been investigated. Based on performed experiments, the composition of powder mixtures as well as technological parameters are proposed which provide the synthesis of monosilicides MoSi₂, NbSi₂, and binary silicides Mo₁-хNbxSi₂ with different ratios of Nb/Mo by adding different contents of MoO₃ and Nb₂O₅. Microstructure and phase compositions of the obtained silicide ingots are characterized by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and backscatter electron diffraction. KW - Synthesis KW - EBSD KW - XRD PY - 2016 DO - https://doi.org/10.1002/adem.201600334 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 6 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-37209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Holzlechner, Gerald A1 - Nolze, Gert A1 - Wirth, Thomas A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) imaging of deuterium assisted cracking in a 2205 duplex stainless steel microstructure N2 - In the present work, the influence of deuterium on the microstructure of a duplex stainless steel type EN 1.4462 has been characterized by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) supported by scanning electron microscopy (SEM), focused ion beam (FIB), electron back scattered diffraction(EBSD) and energy dispersive x-ray (EDX) investigations. Characterization has been carried out before and after electrochemical charging with deuterium which has been used as a tracer, due to its similar behavior to hydrogen in the steel microstructure. In a first approach, the distribution of the deuterium occurring at temperatures above 58 °C has been visualized. Further it turned out that sub-surface micro blisters are formed in the ferrite-austenite interface, followed by the formation of needle shaped plates and subsequent cracking at the ferrite surface. In the austenite phase, parallel cracking alongside twins and hexagonal close packed (martensitic) regions has been observed. In both phases and even in the apparent interface, cracking has been associated with high deuterium concentrations, as compared to the surrounding undamaged microstructure. Sub-surface blistering in the ferrite has to be attributed to the accumulation and recombination of deuterium at the ferrite-austenite interface underneath the respective ferrite grains and after fast diffusing through this phase. Generally, the present application of chemometric imaging and structural analyses allows characterization of hydrogen assisted degradation at a sub-micron lateral resolution. KW - ToF-SIMS KW - Hydrogen assisted cracking KW - Hydrogen embrittlement KW - SEM KW - FIB KW - EBSD PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0921509316310334 DO - https://doi.org/10.1016/j.msea.2016.08.107 SN - 0921-5093 VL - 676 SP - 271 EP - 277 PB - Elsevier B.V. AN - OPUS4-37298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dietrich, D. A1 - Nolze, Gert A1 - Mehner, T. A1 - Nickel, D. A1 - Lampke, T. T1 - EDS/EBSD studies and HR-EBSD pattern analysis on pre-Inca ceramic fragments recovered during San José de Moro Archaeology Program N2 - Pre-Inca civilizations like the coastal cultures Moche and Nazca (Early Intermediate) and the inland culture Wari (Middle Horizon) were agrarian societies which supported indigenous elites of impressive wealth, power, and organization. With the expansion of the Wari Empire, the polychrome style and technique of Nazca propagated to the other cultures. High status burials, most of the Late Moche Fine Line ceramics and a large corpus of ceramics with Wari-derived decoration have been recovered in San José de Moro since 1991. The degree of transfer of procedures in this highly interactive scenario is of special interest: is there a limitation to decoration or is it adopted by the local potters also regarding the formulation of the ceramic bodies? In this context the relative amount, size and type of incorporated non-plastic inclusions as temper are important. T2 - The 16th European Microscopy Congress 2016 CY - Lyon, France DA - 28.08.2016 KW - EBSD KW - EDX KW - Ceramic KW - Phase distribution KW - Microstructure KW - Texture KW - Phase identification KW - SEM PY - 2016 DO - https://doi.org/10.1002/9783527808465.EMC2016.4462 SP - 4462 PB - John Wiley & Sons AN - OPUS4-37740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glenn, A.M. A1 - Hughes, A.E. A1 - Torpy, A. A1 - Nolze, Gert A1 - Birbilis, N. T1 - Defect density associated with constituent particles in AA2024-T3 and its role in corrosion N2 - Electron backscatter diffraction (EBSD) and scanning electron microscopy were combined to study the effect of residual defect density on corrosion initiation in aluminium alloy AA2024-T3. EBSD was used to determine the level of misorientation (MO), from pixel to pixel, within individual grains. The MO can be determined with respect to either the average orientation angle of the grain or with respect to the average orientation angle of the surrounding pixels (in this instance, a matrix of 7×7 surrounding pixels has been applied). Herein, the MO, determined using the surrounding pixels, was used as the means for the assessing the level of defect density within a grain. It was found that there was a noteworthy, but not definitive, correlation of MO with corrosion initiation after 1 min exposure to 0.1 M NaCl solution. Additionally, the S and θ-phase particles were also identified using EBSD, displaying a range of MO and therefore defect density. KW - Al-alloy KW - S-phase KW - EBSD KW - Corrosion KW - AA2024-T3 KW - Defect density PY - 2016 DO - https://doi.org/10.1002/sia.5813 SN - 0142-2421 SN - 1096-9918 VL - 48 IS - 8 (SI) SP - 780 EP - 788 PB - Wiley CY - Chichester AN - OPUS4-34476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - Crystallometric and projective properties of Kikuchi diffraction patterns N2 - Kikuchi diffraction patterns can provide fundamental information about the lattice metric of a crystalline phase. In order to improve the possible precision and accuracy of lattice parameter determination from the features observed in Kikuchi patterns, some useful fundamental relationships of geometric crystal-lography are reviewed, which hold true independently of the actual crystal symmetry. The Kikuchi band positions and intersections and the Kikuchi band widths are highly interrelated, which is illustrated by the fact that all lattice plane trace positions of the crystal are predetermined by the definition of only four traces. If, additionally, the projection centre of the gnomonic projection is known, the lattice parameter ratios and the angles between the basis vectors are fixed. A further definition of one specific Kikuchi band width is sufficient to set the absolute sizes of all lattice parameters and to predict the widths of all Kikuchi bands. The mathematical properties of the gnomonic projection turn out to be central to an improved interpretation of Kikuchi pattern data, emphasizing the importance of the exact knowledge of the projection centre. KW - EBSD KW - Crystallography KW - Kikuchi patterns KW - Projective geometry PY - 2017 DO - https://doi.org/10.1107/S1600576716017477 SN - 1600-5767 VL - 50 IS - Part 1 SP - 102 EP - 119 PB - International Union of Crystallography AN - OPUS4-39061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Novel approach to image hydrogen distribution and related phase transformation in duplex stainless steels at the sub-micron scale N2 - The effect of electrochemical charging of hydrogen on the structure of a lean duplex stainless steel LDX 2101® (EN 1.4162, UNS S32101) was examined by both Time-of-Flight secondary ion mass spectrometry and electron back-scatter diffraction. The goal is to correlate hydrogen concentration and induced structural changes. Chemical and structural characterizations were done for the same region at the sample's surface with sub-micron spatial resolution. Regions of interest were varying in size between 50 × 50 μm and 100 × 100 μm. The results show a phase transformation of austenite to mainly a defect-rich BCC and scarcely a HCP phase. The phase transformation occurred in deuterium rich regions in the austenite. KW - Time-of-flight secondary ion mass spectrometry KW - ToF-SIMS KW - Electron backscatter diffraction KW - EBSD KW - Hydrogen-assisted cracking KW - Data fusion KW - Lean duplex stainless steel PY - 2017 DO - https://doi.org/10.1016/j.ijhydene.2017.08.016 SN - 0360-3199 VL - 42 IS - 39 SP - 25114 EP - 25120 AN - OPUS4-42022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Harnisch, K. A1 - Rosemann, Paul A1 - Halle, T. T1 - Gefüge- und Phasenanalyse biokompatibler Co-Cr-Mo-Legierung N2 - Co-Cr-Mo-Werkstoffe sind im Bereich der Biomaterialien weit verbreitet und werden für Endoprothesen eingesetzt. Deren Lebensdauer ist jedoch durch tribologische und korrosive Dauerbelastung begrenzt. Um die Anzahl operativer Eingriffe am Patienten zu minimieren, ist es notwendig den Werkstoff hinsichtlich Verschleißbeständigkeit und Korrosionsbeständigkeit zu optimieren. Hierfür ist ein umfassendes Verständnis der legierungsabhängigen Phasenbildung und –entwicklung während Herstellung und Wärmebehandlung notwendig. An einer speziellen Co-Cr-Mo Legierung werden verschiedene Untersuchungen zur Gefügecharakterisierung durchgeführt. Dabei werden die auftretenden Phasen thermodynamisch berechnet, mittels XRD nachgewiesen, die Phasenmorphologie durch EBSD analysiert, die Elementverteilung durch EDX-Analyse ermittelt und die Ergebnisse durch Farbätzen verifiziert. Das Ziel der Untersuchungen ist es, Optimierungspotentiale bei Herstellung und Wärmebehandlung zu identifizieren. T2 - Werkstoffwoche 2017 CY - Dresden, Germany DA - 27.09.2017 DA - 29.09.2017 KW - CoCrMo KW - Gefüge KW - ThermoCalc KW - EBSD KW - Farbätzen PY - 2017 AN - OPUS4-42832 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Boellinghaus, Thomas A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Eliezer, D. T1 - High resolution ToF-SIMS imaging of deuterium permeation and cracking in duplex stainless steels N2 - Fundamental understanding and elucidation of hydrogen assisted degradation and trapping mechanisms is dependent on sufficient imaging techniques for respective hydrogen interactions, in particular with multi-phase metallic microstructures. The present work shows the progress in elucidating the deuterium behavior in austenitic-ferritic duplex stainless steels under the consideration that deuterium behaves in many ways similarly to hydrogen. A novel combination of deuterium permeation and in-situ Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) imaging technique is compared with post charging ToF-SIMS imaging experiments. As a step beyond state-of-the-art, integration of chemo-metric and high resolution structural characterization techniques with computational multivariate data analysis (MVA) and data fusion is presented. T2 - 2016 International Hydrogen Conference CY - Grand Teton National Park, Jackson Lake Lodge, Wyoming, USA DA - 11.09.2016 KW - DSS KW - ToF-SIMS KW - Data-fusion KW - EBSD PY - 2017 SN - 978-0-7918-6138-7 SP - 407 EP - 415 PB - ASME Press CY - Two Park Ave. New-York, NY 10016, USA AN - OPUS4-42647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Straub, Franka A1 - Nolze, Gert A1 - Wirth, Thomas A1 - Boellinghaus, Thomas A1 - Unger, Wolfgang T1 - Observations of the deuterium distribution and the structural changes in standard and lean duplex stainless steels by ToF-SIMS and EBSD N2 - The use of duplex stainless steels (DSS) in energy related applications is well known. Nowadays, DSSs become more favorable than austenitic steels due to the outstanding mechanical properties, the good corrosion resistance and the lower nickel content.However, the use of the duplex grade in acidic environments such as seawater can lead to a severe degradation in the structural integrity of the steel by hydrogen-induced/assisted cracking mechanisms, which can eventually result in premature failure. Hydrogen assisted degradation and cracking of steels remains unclear even though this topic is intensively studied for more than a century. The main gap lies in the validation of the proposed theoretical models at the sub-micron scale. Industrial and the research communities define a need for an accurate method by which it is possible to image the distribution of hydrogen in the microstructure. Among the very few available methods nowadays, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provides precise mapping of hydrogen in the microstructure. Moreover, the powerful combination of ToF-SIMS with multivariate data analysis (MVA), electron backscattered diffraction (EBSD) for providing a the structural information and the use of data fusion techniques can contribute to a better understanding of the hydrogen induced degradation processes in the material. In the present work two types of duplex grades were chosen as a case study (standard and lean DSS). The duplex class, consist of equivalent amounts of ferrite and austenite, was investigated by ToF-SIMS and EBSD during and after electrochemical deuterium charging in order to simulate the service of a component in acidic environments. Deuterium is known to act on the steel similarly to hydrogen and therefore was used as a tracer for hydrogen. The results show that the ferrite was affected almost identical in both steels whereas in the austenitic phase significant differences were observed in the lean duplex in comparison to the standard duplex. The advantage of the combined techniques is reflected by the ability to correlate the hydrogen distribution in the microstructure to the resulted structural changes. T2 - 21st International Conference on Secondary Ion Mass Spectrometry - SIMS21 CY - Krakow, Poland DA - 10.09.2017 KW - ToF-SIMS KW - Duplex-steel KW - EBSD KW - Data-fusion PY - 2017 UR - http://sims.confer.uj.edu.pl/boa_oral.php?id=23 AN - OPUS4-42864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wisniewski, W. A1 - Thieme, C. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Groß-Barsnick, S.-M. A1 - Rüssel, C. T1 - Oriented surface nucleation and crystal growth in a 18BaO·22CaO·60SiO2 mol% glass used for SOFC seals N2 - A glass of the composition 37BaO·16CaO·47SiO2 wt% produced on an industrial scale is crystallized at 970 °C for times ranging from 15 min to 2 h. The crystallization at the immediate surface as well as the crystal growth into the bulk are analyzed using scanning electron microscopy (SEM) including energy dispersive X-ray spectroscopy (EDXS) and electron backscatter diffraction (EBSD) as well as X-ray diffraction in the Θ–2Θ setup (XRD). The immediate surface shows the oriented nucleation of walstromite as well as the formation of wollastonite and an unknown phase of the composition BaCaSi3O8. All three phases also grow into the bulk where walstromite ultimately dominates the kinetic selection and grows throughout the bulk due to a lack of bulk nucleation. Walstromite shows systematic orientation changes as well as twinning during growth. A critical analysis of the XRD-patterns acquired from various crystallized samples indicates that their evaluation is problematic and that phases detected by XRD in this system should be verified by another method such as EDXS. KW - Glass KW - Surface nucleation KW - Orientation KW - EBSD PY - 2018 DO - https://doi.org/10.1039/c7ce02008b VL - 20 IS - 6 SP - 787 EP - 795 PB - Royal Society of Chemistry AN - OPUS4-44405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Rosemann, Paul A1 - Halle, T. T1 - Reversed austenite for enhancing ductility of martensitic stainless steel N2 - Quenching and partitioning (Q&P) heat Treatment increases the deformability of high-strength martensitic steels. Therefore, it is necessary to have some metastable austenite in the microstructure, which transforms in martensite during plastic deformation (TRIP effect). The austenitic-martensitic microstructure is gained by an increased austenitization temperature, water quenching and additional partitioning. The partitioning enables local carbon diffusion, which stabilizes retained austenite and leads to partial reversion of martensite to austenite. The influence of partitioning time was studied for the martensitic stainless steel AISI 420 (X46Cr13, 1.4034). In line with these efforts, metallographic, XRD and EBSD measurements were performed to characterize the microstructural evolution. The mechanical properties were tested using tension and compression loading. Additional corrosion investigations showed the benefits of Q&P heat treatment compared to conventional tempering. The reversion of austenite by the partitioning treatment was verified with EBSD and XRD. Furthermore, the results of the mechanical and corrosion testing showed improved properties due to the Q&P heat treatment. T2 - International Conference on Martensitic Transformations CY - Chicago, IL, USA DA - 09.07.2017 KW - Heat treatment KW - High ductility KW - Martensitic stainless steels KW - Quenching and partitioning KW - Transformation induced plasticity KW - KorroPad KW - EBSD KW - Mechanical testing PY - 2018 SN - 978-3-319-76968-4 DO - https://doi.org/10.1007/978-3-319-76968-4_19 SP - 123 EP - 128 PB - Springer AN - OPUS4-44689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Observations of the deuterium distribution and the structural changes in standard and lean duplex stainless steels by ToF-SIMS and EBSD N2 - Duplex (DSS) and austenitic stainless steels (ASS) are frequently used in many energy related applications. The duplex grade is considered to have outstanding mechanical properties as well as good corrosion resistance. The austenitic phase combines high ductility, even at low temperatures, with sufficient strength, and therefore such materials are applied in storage and transport of high-pressure hydrogen. During service in acidic environments large amounts of hydrogen can ingress into the microstructure and induce many changes in the mechanical properties of the steel. Embrittlement of steels by hydrogen remains unclear even though this topic has been intensively studied for several decades. The reason for that lies in the inability to validate the proposed theoretical models in the sub-micron scale. Among the very few available methods nowadays, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) enables a highly accurate mapping of hydrogen in the microstructure in a spatial resolution below 100 nm. In the present work ToF-SIMS was used as a main tool in order to investigate the effect of deuterium on a duplex microstructure of lean and standard DSSs during and after the electrochemical charging process. Electrochemical charging simulates the service of a component in acidic environments under conditions of cathodic protection that are commonly applied to prevent corrosion reactions. ToF-SIMS after multivariate data analysis (MVA) was combined with high resolution topographic images and electron back-scattered diffraction (EBSD) data to characterize the structural changes. It was observed that the ferritic phase was affected almost identical in all steels whereas in the austenitic phase significant differences were obtained in the lean duplex in comparison to the standard DSS. The obtained results have been compared to similar investigations on a AISI 304L austenitic stainless steel. The advantage of the combined techniques is reflected by the ability to correlate the hydrogen distribution in the microstructure and the resulted phase transformation. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgien DA - 29.05.2018 KW - Data-fusion KW - ToF-SIMS KW - PCA KW - DSS KW - LDX KW - EBSD PY - 2018 AN - OPUS4-45094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Fritsch, S. A1 - Rosemann, Paul A1 - Wagner, M. A1 - Halle, T. T1 - SD effect in martensitic stainless steel under Q&P heat treatment condition N2 - The quenching and partitioning (Q&P) heat treatment enables a higher deformability of high strength martensitic steels. The Q&P heat treatment was applied on the martensitic stainless steel 1.4034 (X46Cr13) to study the influence of partitioning time. Therefore, extensive characterizations of the mechanical properties, focussing on the materials behaviour under different mechanical load scenarios, were performed. A comprehensive analysis of the microstructural evolution was per-formed for different heat treatment and mechanical loading states. A complete solution of chromium carbides was detected to be a first requirement for successful Q&P heat treatment. The comparison of common quenching and tempering with the Q&P heat treatment verifies the extensively enhanced materials strength whereat the formability is still acceptable. The microstructural reason was detected to be an increasing aus-tenite fraction due to austenite reversion at subgrain boundaries of martensite besides the stabilising of retained austenite. Further a distinctive strength differential effect was observed. T2 - 11th European Symposium on Martensitic Transformations CY - Metz, France DA - 27.08.2018 KW - Martensitic stainless steels KW - Heat treatment KW - EBSD KW - Quenching and partitioning KW - TRIP PY - 2018 AN - OPUS4-45803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czediwoda, Fabian A1 - Fedelich, Bernard A1 - Stöhr, B. A1 - Göhler, T. A1 - Völkl, R. A1 - Nolze, Gert A1 - Glatzel, U. T1 - A numerical approach to model high-temperature creep behaviour of Ni-base superalloys from microstructural morphology to grain size scales N2 - A constitutive model for the mechanical behaviour of single crystal Ni-base superalloys under high temperature conditions has been developed in the framework of a Cooretec project in cooperation with Siemens AG, MTU Aero Engines AG and University Bayreuth. In addition to the conventional material properties e.g. elastic constants, the model requires the parameters of the initial microstructure as an input. Thus, the γ’-precipitate size and the channel width of the γ-matrix were obtained from SEM micrographs. The model uses the slip system theory and describes the movement, multiplication and annihilation of dislocations in the channels. Furthermore, the cutting of precipitates is another mechanism contributing to the plastic flow. The evolution of the morphology due to rafting and its effects on the deformation have been implemented according to. The kinematic hardening is introduced as a stress tensor to realistically represent the strain hardening of arbitrary oriented single crystals. The mechanical behaviour of single crystal specimens has been experimentally investigated in tension tests at different strain rates and in creep tests under various loads. The constitutive model has been calibrated based on the experimental data for temperatures of 950°C and 850°C and the [001] and [111] crystallographic orientations. Finally, a micromechanical model was created to simulate the creep response of additive manufactured polycrystalline structures. An EBSD image is taken to obtain the grain geometry and their respective orientation. The grain boundaries are discretised using cohesive elements, whereas the single crystal model was applied to each grain in the representative volume. The polycrystal model is generated using Dream3D, NetGen and other software previously developed at the BAM. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Nickel-base superalloy KW - Creep KW - Rafting KW - Viscoplasticity KW - EBSD KW - Grain boundaries PY - 2018 AN - OPUS4-46973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Hydrogen assisted cracking phenomena in duplex stainless steels elucidated by in- and ex-situ ToF-SIMS experiments N2 - In the presented research, the high potential and abilities of secondary ion mass spectrometry (ToF-SIMS) to detect and locally map the hydrogen distribution in two types of duplex stainless steels are shown. The research validates certain proposed mechanisms by combining ToF-SIMS with high-resolution scanning electron microscopy and electron-backscattered diffraction. The combination of data from several techniques on the same region was conducted in this field for the first time by applying data treatment of the ToF-SIMS raw data and data fusion approach. This powerful combination of methods allows reviewing of the occurring processes related to hydrogen assisted cracking. The step beyond the state of the art in this field was gained here by developing permeation and mechanical loading experiments within the ToF-SIMS during chemometric imaging of the hydrogen distribution in the microstructure. The research presents the necessary correlation between the hydrogen distribution and the resulted structural changes, the diffusion behavior in a duplex microstructure and stress induced diffusion of hydrogen by applying external load at the microscale. T2 - 6th WMRIF Early Career Scientist Summit CY - NPL Teddington UK DA - 18.06.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - LDX KW - EBSD KW - Data-fusion PY - 2018 AN - OPUS4-46865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Müller, Ralf T1 - Characterization of early crystallization stages in surface-crystallized diopside glass-ceramics N2 - Structure formation in glass-ceramics by means of surface crystallization is a challenging open question and remains elusive to definite answers. In several glass-ceramic systems, oriented crystal layers have been observed at the immediate surface, including diopside and some fresnoite systems. However, it is still open to debate, whether oriented surface crystallization is the result of oriented nucleation or growth selection effects. In the same vein, there is still discussion whether surface nucleation is governed by surface chemistry effects or by defects serving as active nucleation sites. In order to help answer these questions, annealing experiments at 850°C have been performed on a MgO·CaO·2SiO2 glass, leading to the crystallization of diopside at the surface. Different annealing durations and surface treatment protocols (i.a. lapping with diamond slurries between 16 µm and 1 µm grain size) have been applied. Particular focus has been put on earliest crystallization stages, with crystal sizes down to about 200 nm. The resultant microstructure has been analyzed by electron backscatter diffraction (EBSD) and two different kinds of textures have been observed, with the a- or b-axis being perpendicular to the sample surface and the c-axis lying in the sample plane. Even at shortest annealing durations, a clear texture was present in the samples. Additionally, selected samples have been investigated with energy-dispersive x-ray spectroscopy in the scanning transmission electron microscope (STEM-EDX). The diopside crystals have been found to exhibit distinguished submicron structure variations and the glass around the crystals was shown to be depleted of Mg. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - Glass KW - Crystallization KW - Diopside KW - EBSD KW - Orientation PY - 2019 AN - OPUS4-49296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Winkelmann, A. A1 - Britton, T. B. A1 - Nolze, Gert T1 - EBSD Kikuchi Pattern Analysis, Silicon 15kV N2 - Supplementary data and images for Si EBSD pattern analysis as presented in: A. Winkelmann, T.B. Britton, G. Nolze "Constraints on the effective electron energy spectrum in backscatter Kikuchi diffraction", Physical Review B (2019). KW - EBSD KW - Electron energy KW - Energy distribution KW - Kikuchi pattern KW - Simulation PY - 2019 DO - https://doi.org/10.5281/zenodo.2565061 PB - Zenodo CY - Geneva AN - OPUS4-51907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Britton, T. B. T1 - Constraints on the effective electron energy spectrum in backscatter Kikuchi diffraction N2 - Electron backscatter diffraction (EBSD) is a technique to obtain microcrystallographic information from materials by collecting large-angle Kikuchi patterns in the scanning electron microscope (SEM). An important fundamental question concerns the scattering-angle dependent electron energy distribution, which is relevant for the formation of the Kikuchi diffraction patterns. Here we review the existing experimental data and explore the effective energy spectrum that is operative in the generation of backscatter Kikuchi patterns from silicon. We use a full pattern comparison of experimental data with dynamical electron diffraction simulations. Our energy-dependent cross-correlation based pattern matching approach establishes improved constraints on the effective Kikuchi pattern energy spectrum, which is relevant for high-resolution EBSD pattern simulations and their applications. KW - EBSD KW - Kikuchi pattern KW - Simulation KW - Energy distribution KW - Electron energy PY - 2019 SN - 2469-9950 SN - 2469-9969 VL - 99 IS - 6 SP - 064115-1 EP - 064115-13 PB - AIP AN - OPUS4-47635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -