TY - GEN T1 - Forschungsprogramm 2019 - 2021 N2 - Die voranschreitende Digitalisierung, die Globalisierung sowie die daraus resultierende beschleunigte technologische Entwicklung bringen heute für die Industrieländer Herausforderungen im Hinblick auf Wachstum, Beschäftigung und Strukturwandel mit sich, denen nur mit einer entsprechenden Innovationsdynamik und -dichte begegnet werden kann. Grundvoraussetzung hierfür ist eine leistungsfähige Forschung und Entwicklung ebenso wie Wissens- und Technologietransfer zur Umsetzung von Forschungsergebnissen in marktfähige Produkte und Dienstleistungen. Europa hat sich im Rahmen des Lissabon-Prozesses zum Ziel gesetzt, den Anteil der Forschungsausgaben am Bruttoinlandsprodukt auf 3 % zu steigern. Um die Forschungsinfrastruktur in der Bundesrepublik zu stärken und global wettbewerbsfähig zu bleiben, hat die Bundesregierung mit der Hightech-Strategie 2025 einen weiteren wichtigen Schritt zur Förderung des wissenschaftlich-technischen Fortschritts in Deutschland getan. Forschungsprogramme sind sowohl für Forschungseinrichtungen als auch für Mittelgeber ein wichtiges Instrument für die Darstellung und Steuerung ihrer Aktivitäten. Dies gilt auch für die Bundeseinrichtungen mit Forschungs- und Entwicklungsaufgaben, zu denen die Bundesanstalt für Materialforschung und -prüfung (BAM) zählt. Die BAM verfügt über einen klaren gesetzlichen Auftrag für die Sicherheit in Technik und Chemie. Ihre Forschung ist mit der Wahrnehmung öffentlicher Aufgaben verbunden. Das Forschungsprogramm zeigt Perspektiven im Bereich ihres Aufgabenfeldes sowie ihrer damit verbundenen Forschungsaktivitäten transparent und politisch nutzbar auf und dient darüber hinaus der Koordinierung der Ressortforschung. Das Forschungsprogramm der BAM wird alle zwei Jahre aktualisiert. Es gibt einen Überblick über die aktuellen und zukünftigen Forschungsthemen und die hierfür erforderlichen Rahmenbedingungen. PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577499 SP - 1 EP - 44 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-57749 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Böhning, Martin A1 - Niebergall, Ute T1 - Physical and chemical effects of biodiesel storage on high-density polyethylene: Evidence of co-oxidation N2 - The physical and chemical effects of diesel and biodiesel fuels on two high-density polyethylene (PE-HD) types were investigated. Both semi-crystalline PE-HD are common thermoplastic materials for container and storage tank applications. Biodiesel, a composition of unsaturated fatty acid esters from renewable resources, was chosen as it is regarded a possible green alternative to fossil fuels. The study aims at identifying significant differences between biodiesel and conventional diesel fuels based on the differences in the chemical nature of the two. The physical effects of the fuels on the polymer at first comprises the sorption behavior, i.e. kinetics and final equilibrium concentration. Not only are both fuels absorbed by the amorphous phase of the semi-crystalline PE-HD, they also induce a plasticization effect that modifies the molecular mobility and therefore also the characteristic yielding properties, manifest in the obtained stress-strain curves. The chemical effects related to degradation phenomena is investigated by a long-term storage scenario using partially immersed tensile test specimens in diesel and biodiesel. We were able to confirm the proposed co-oxidation mechanism by Richaud et al. for polyethylene-unsaturated penetrant systems on a larger scale based on practical tensile tests. One of the investigated polyethylene grades subjected to tensile drawing showed a significant loss of plastic deformation and the onset of premature failure after 150 days of storage in biodiesel. Further biodiesel storage showed a systematically reduced elongation at break before necking. None of these effects were observed in diesel. Oxidation of fuels and polymer after progressing storage times were analyzed by the evolution of carbonyl species in FT-IR/ATR spectroscopy. KW - Biodiesel KW - Degradation KW - Long-term storage KW - Sorption KW - Diesel PY - 2019 DO - https://doi.org/10.1016/j.polymdegradstab.2019.01.018 SN - 0141-3910 VL - 161 IS - 1 SP - 139 EP - 149 PB - Elsevier CY - Amsterdam AN - OPUS4-47268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falk, Florian A1 - Menneken, M. A1 - Stephan-Scherb, Christiane T1 - Real-time observation of high- temperature gas corrosion in dry and wet SO2-containing atmosphere N2 - Sulfur and water have a fundamental impact on the corrosion rate and potential failure of materials. It is therefore necessary to understand the mechanisms, rates, and potential means of transport, as well as the reactions of these elements with an alloy. This paper investigates the effect of water vapor in the initial stages of SO2 corrosion of an Fe-9Cr-0.5Mn model alloy at 650°C in situ under laboratory conditions using energy-dispersive x-ray diffraction analysis. Two separate experiments were run, one with a 99.5% Ar + 0.5% SO2 atmosphere and one with a 69.5% Ar + 0.5% SO2 + 30% H2O atmosphere. With a wet atmosphere, the alloy formed a scale with decreasing oxygen content towards the scale–alloy interface. Sulfides were identified above and below a (Fe, Cr)3O4 layer in the inner corrosion zone. In contrast to this, the overall scale growth was slower in a dry SO2 atmosphere. KW - Early oxidation KW - Early sulfidation KW - Ferritic steels PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472844 UR - https://link.springer.com/article/10.1007/s11837-019-03335-9#enumeration DO - https://doi.org/10.1007/s11837-019-03335-9 SN - 1047-4838 SN - 1543-1851 VL - 71 SP - 1 EP - 6 PB - Springer CY - New York AN - OPUS4-47284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - An, Biwen Annie A1 - Shen, Y. A1 - Voordouw, J. A1 - Voordouw, G. T1 - Halophilic methylotrophic methanogens may contribute to the high ammonium concentrations found in shale oil and shale gas reservoirs N2 - Flow-back and produced waters from shale gas and shale oil fields contain high ammonium, which can be formed by methanogenic degradation of methylamines into methane and ammonium. Methylamines are added to fracturing fluid to prevent clay swelling or can originate from metabolism of the osmolyte triglycinebetaine (GB). We analyzed field samples from a shale gas reservoir in the Duvernay Formation and from a shale oil reservoir in the Bakken formation in Canada to determine the origin of high ammonium. Fresh waters used to make fracturing fluid, early flow-back waters, and late flow back waters from the shale gas reservoir had increasing salinity of 0.01, 0.58, and 2.66 Meq of NaCl, respectively. Microbial community analyses reflected this fresh water to saline transition with halophilic taxa including Halomonas, Halanaerobium, and Methanohalophilus being increasingly present. Early and late flow-back waters had high ammonium concentrations of 32 and 15 mM, respectively. Such high concentrations had also been found in the Bakken produced waters. Enrichment cultures of Bakken produced waters in medium containing mono, di-, or trimethylamine, or triglycinebetaine (GB) converted these substrates into ammonium (up to 20 mM) and methane. The methylotrophic methanogen Methanohalophilus, which uses methylamines for its energy metabolism and uses GB as an osmolyte, was a dominant community member in these enrichments. Halanaerobium was also a dominant community member that metabolizes GB into trimethylamine, which is then metabolized further by Methanohalophilus. However, the micromolar concentrations of GB measured in shale reservoirs make them an unlikely source for the 1,000-fold higher ammonium concentrations in flow-back waters. This ammonium either originates directly from the reservoir or is formed from methylamines, which originate from the reservoir, or are added during the hydraulic fracturing process. These methylamines are then converted into ammonium and methane by halophilic methylotrophic methanogens, such as Methanohalophilus, present in flow-back waters. KW - Methanogen KW - Oil and gas industry KW - Shale KW - Halophile KW - Corrosion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474982 DO - https://doi.org/10.3389/fenrg.2019.00023 SN - 2296-598X VL - 7 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-47498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peláez, R.J. A1 - Rebollar, E. A1 - Serna, R. A1 - Acosta-Zepeda, C. A1 - Saavedra, P. A1 - Bonse, Jörn A1 - Haro-Poniatowski, E. T1 - Nanosecond laser-induced interference grating formation on silicon N2 - The formation of gratings on the surface of a silicon wafer by nanosecond laser irradiation through a phase mask using an ArF laser emitting at 193 nm is studied. The phase mask along with some focusing optics is capable to generate via interference a periodic intensity distribution, which can be used for surface patterning. The surface patterning strongly depends on the laser energy density and on the number of pulses, as revealed by atomic force microscopy (AFM). The results show that irradiation even with a single laser pulse produces periodic depth modulations on the surface. The spatial surface modulation is in the micrometer (1.7 µm) range while the depth modulation is in the nanometer regime (1–20 nm). With an increasing number of pulses (1–100), the depth modulation amplitude increases smoothly. Increasing the number of pulses further results in the progressive destruction of the grating, vanishing completely after ~5000 pulses. This evolution is also monitored in situ by measuring the intensity of the first order-diffracted probe beam and the behavior is in accordance with what is observed by AFM. Finally, we qualitatively explain the results invoking thermally induced effects in the melted Si: these physical processes involved are probably thermocapillary and/or Marangoni effects inducing material displacement as the surface melts. KW - Nanosecond laser irradiation KW - Silicon KW - Surface modification KW - Phase mask KW - Grating PY - 2019 UR - https://iopscience.iop.org/article/10.1088/1361-6463/ab0c5f DO - https://doi.org/10.1088/1361-6463/ab0c5f SN - 1361-6463 SN - 0022-3727 VL - 52 IS - 22 SP - 225302, 1 EP - 10 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-47619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Jan P. A1 - Krankenhagen, Rainer T1 - Optimizing thermographic testing of thick GFRP plates by assessing the real energy absorbed within the material N2 - Active thermography is a well suited non-destructive testing method for the challenging inspection of wind rotor blades. Since the GFRP structures are up to some centimetres thick, long pulse heating is required to provide an appropriate energy input into the structure. So far, no best practice exists to guarantee a reliable detection of deep-lying flaws. In this work, a step wedge specimen having a maximum thickness of 34mm is systematically investigated by experiment and well-matched simulations to assess the influence of the experimental parameters, like the absorbed energy, on thermal contrasts. Finally, a scheme to conduct full-scale test of a wind rotor blade in less than three hours is proposed. KW - Pulsed thermography KW - Wind rotor blade KW - GFRP PY - 2019 DO - https://doi.org/10.1016/j.compstruct.2019.02.027 SN - 0263-8223 VL - 215 SP - 60 EP - 68 PB - Elsevier CY - Amsterdam AN - OPUS4-47396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR T1 - Amts- und Mitteilungsblatt, Band 49, Heft 1 T3 - Amts- und Mitteilungsblatt der BAM - 1/2019 KW - Anerkennungen KW - Zulassungen KW - Richtlinien KW - Festlegungen KW - Ausnahmegenehmigungen PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477509 SN - 0340-7551 VL - 49 IS - 1 SP - 1 EP - 124 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-47750 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Pauw, Brian Richard A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes N2 - Superglassy polymers with a large fractional free volume have emerged as novel materials with a broad range of applications, especially in the field of membrane separations. Highly permeable addition-type substituted polynorbornenes with high thermal resistance and chemical stability are among the most promising materials. The major obstacle for extending the practical membrane application is their strong tendency to physical aging, leading to a partial decline in their superior transport performance over time. In the present study, broadband dielectric spectroscopy with complementary X-ray scattering techniques were employed to reveal changes in microporous structure, molecular mobility, and conductivity by systematic comparison of two polynorbornenes with different numbers of trimethylsilyl side groups. Their response upon heating (aging) was compared in terms of structure, dynamics, and charge transport behavior. Furthermore, a detailed analysis of the observed Maxwell−Wagner−Sillars polarization at internal interfaces provides unique information about the microporous structure in the solid films. The knowledge obtained from the experiments will guide and unlock potential in synthesizing addition-type polynorbornenes with versatile properties. KW - Dielectric spectroscopy KW - Molecular mobility KW - Electrical conductivity KW - Gas separation membranes PY - 2019 DO - https://doi.org/10.1021/acsapm.9b00092 SN - 2637-6105 VL - 1 IS - 4 SP - 844 EP - 855 PB - ACS CY - Washington DC AN - OPUS4-47838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, David A1 - Ou, D. A1 - Ghafafian, Carineh A1 - Zscherpel, Uwe A1 - Trappe, Volker T1 - Wind turbine rotor blade testing by dual-energy laminography N2 - Modern wind turbine rotor blades consist of sandwich shell segments made from glass fiber reinforced polymers. During manufacturing, defects can arise which could lead to failure of the whole component under dynamic mechanical and thermal loads. Hence during operation defects can arise which, if detected, can be repaired locally and in-situ by applying repair patches instead of taking the whole rotor blade down and repair it remotely. This method is much more time and cost effective, since the shut-down time of the energy converter is limited to a minimum. These repair patches can, however, also lead to new defects if not applied optimally. Therefore, it is necessary to control the quality of the repair patches to ensure the best possible restoration of structural integrity of the component. As a rotor blade is an object with a large aspect ratio, X-ray laminography is predestined to provide 3D information of the objective volume. To enhance the amount of information gained from laminographic reconstruction, we use in this study a photon counting and energy discriminating X-ray detector and apply a material decomposition algorithm to the data. By inherently separating the incident spectra within the detection process into two distinct energy bins, the basis material decomposition can provide material resolved images. Choosing glass and epoxy resin as basis materials and numerically solving the inverse dual-energy equation system, the reconstructed laminographic datasets contain highly valuable information about the distribution of the basis materials within the structure. Furthermore, cross- artifacts arising from the limited angle of the projection data can be reduced by this method which allows to investigate structures that were hidden underneath the artefacts. T2 - International Symposium on Digital Industrial Radiology and Computed Tomography – DIR2019 CY - Fürth, Germany DA - 02.07.2019 KW - Laminography KW - Wind energy KW - Fiber reinforced polymer KW - Photon counting detector KW - Repair patch PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484380 UR - https://www.dir2019.com/portals/dir2019/bb/Tu.3.A.1.pdf SN - 978-947971-06-0 SP - 1 EP - 13 AN - OPUS4-48438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen diffusion in creep-resistant 9%-Cr P91 steel weld metal N2 - 9 %-Cr steel P91 is widely used in power plants due to the excellent creep-resistance. Components of this steel are typically welded and demand for careful welding fabrication, whereas a so-called post weld heat treatment (PWHT), must be conducted to increase the toughness and decrease the hardness of the martensitic as-welded (AW) microstructure. Before the PWHT, a hydrogen removal (or dehydrogenation) heat treatment is necessary as hardened AW martensitic microstructure is generally prone to delayed hydrogen assisted cracking (HAC). The microstructure and temperature dependent hydrogen diffusion is an important issue as it determines how long a potential crack-critical hydrogen concentration could remain in the microstructure. In this context, reliable hydrogen diffusion coefficients of P91 weld metal are rare. Hence, the diffusion behavior of P91 multi-layer weld metal was investigated in two different microstructure conditions: AW and further PWHT (760 °C for 4 h). Two different experimental techniques were used to cover a wide range of hydrogen diffusion temperatures: the electrochemical permeation technique (PT) at room temperature and the carrier gas hot extraction (CGHE) for a temperature range from 100 to 400 °C. From both techniques typical hydrogen diffusion coefficients were calculated and the corresponding hydrogen concentration was measured. It was ascertained that both heat treatment conditions show significant differences in hydrogen diffusivity. The biggest deviations were identified for room temperature. In this case, the AW condition shows significant hydrogen trapping and up to seven times lower diffusion coefficients. Additionally, PT investigations showed a preferred diffusion direction of hydrogen in the weld metal expressed by the diffusion coefficients and the permeability for both heat treatment conditions. The CGHE generally revealed lower diffusion coefficients for the AW microstructure up to 200 °C. In addition, the AW condition showed hydrogen concentrations up to 50 ml/100 g (considering electrochemical charging). Nonetheless, this hydrogen was not permanently (reversibly) trapped. Nonetheless, this temperature is approximately 100 °C below recommended dehydrogenation heat treatment (DHT). This has two main consequences: (I) in case of welding is interrupted or no DHT is conducted, a HAC susceptibility of hardened martensitic P91 weld metal cannot be excluded and (II) DHT can be conducted at temperatures around 200 °C below the recommended temperatures. T2 - IIW Annual Assembly, Meeting of Commission IX-C "Creep and heat resistant welds" CY - Bratislava, Slovakia DA - 07.07.2019 KW - Hydrogen KW - Diffusion KW - Weld metal KW - Microstructure KW - Post weld heat treatment PY - 2019 AN - OPUS4-48449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, David T1 - Wind turbine rotor blade testing by dual-energy laminography N2 - Modern wind turbine rotor blades consist of sandwich shell segments made from glass fiber reinforced polymers. During manufacturing, defects can arise which could lead to failure of the whole component under dynamic mechanical and thermal loads. Hence during operation defects can arise which, if detected, can be repaired locally and in-situ by applying repair patches instead of taking the whole rotor blade down and repair it remotely. This method is much more time and cost effective, since the shut-down time of the energy converter is limited to a minimum. These repair patches can, however, also lead to new defects if not applied optimally. Therefore, it is necessary to control the quality of the repair patches to ensure the best possible restoration of structural integrity of the component. As a rotor blade is an object with a large aspect ratio, X-ray laminography is predestined to provide 3D information of the objective volume. To enhance the amount of information gained from laminographic reconstruction, we use in this study a photon counting and energy discriminating X-ray detector and apply a material decomposition algorithm to the data. By inherently separating the incident spectra within the detection process into two distinct energy bins, the basis material decomposition can provide material resolved images. Choosing glass and epoxy resin as basis materials and numerically solving the inverse dual-energy equation system, the reconstructed laminographic datasets contain highly valuable information about the distribution of the basis materials within the structure. Furthermore, cross- artifacts arising from the limited angle of the projection data can be reduced by this method which allows to investigate structures that were hidden underneath the artefacts. T2 - 1st International Symposium on Photon Counting Technologies & Applications CY - München, Germany DA - 05.07.2019 KW - Laminography KW - Wind energy KW - Fiber reinforced polymer KW - Photon counting detector KW - Dual-energy PY - 2019 AN - OPUS4-48440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - B, Yang A1 - Chua, Y. Z. A1 - Szymoniak, Paulina A1 - Carta, M A1 - Malpass-Evans, R A1 - McKeown, N A1 - Harrison, W A1 - Budd, P A1 - Schick, C A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Effect of backbone rigidity on the glass transition of polymers of in-trinsic microporosity probed by fast scanning calorimetry N2 - Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships including physical aging. In this context the glass transi-tion plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs be-fore their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs. KW - Polymers of intrinsic microporosity KW - Fast scanning calormetry PY - 2019 DO - https://doi.org/10.1021/acsmacrolett.9b00482 SN - 2161-1653 VL - 8 IS - 8 SP - 1022 EP - 1028 PB - ACS Publications AN - OPUS4-48617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures: from nanoscaled light localization to applications N2 - In this contribution the current state in the field of Laser-Induced Periodic Surface Structures (LIPSS) is reviewed. This includes the mechanisms of formation and current applications, particularly the colorization of technical surfaces, the control of surface wetting properties, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - PHOTONICA 2019 - The Seventh International School and Conference on Photonics CY - Belgrade, Serbia DA - 26.08.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Surface functionalization PY - 2019 UR - http://www.photonica.ac.rs/docs/PHOTONICA2019-Book_of_abstracts.pdf AN - OPUS4-48836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin T1 - Fire reference test for IAEA package thermal testing in a propane gas fire test facility N2 - Packages for the transport of radioactive material shall withstand severe accidents. Therefore, the IAEA Regulations define different test scenarios to cover severe hypothetical accident conditions. One of these tests defined in detail is the thermal test, mainly consisting of a 30 minute fully engulfing 800 °C pool fire or an equally severe fire test. The heat fluxes into the package are of significant importance and depend substantially on the fire characteristics and the surface temperature of the package. In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Thermal testing KW - Convection coefficient KW - IAEA fire KW - Propane gas fire test facility PY - 2019 AN - OPUS4-48841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Einladung zum Kolloquium HZDR – Helmholtz-Zentrum Dresden-Rossendorf CY - Dresden, Germany DA - 24.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Archaea Meeting-Schmitten VAAM Fachgruppe CY - Schmitten, Germany DA - 12.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burkert, Andreas T1 - Korrosionsuntersuchungen in Erdböden N2 - Das Verhalten von Erdböden gegenüber metallenen Konstruktionswerkstoffen ähnelt in vielen Fällen der von neutralen Wässern. Der in natürlichen Erdböden vorhandene Wasseranteil bildet mit den löslichen Inhaltsstoffen eine Elektrolytlösung. Eine merkbare Korrosionsgeschwindigkeit tritt erst dann auf, wenn der Boden einen bestimmten Wassergehalt aufweist, der eine Sauerstoffdiffusion im Boden zur Oberfläche des Metalls gewährleistet. Von maßgebendem Einfluss auf die korrosionsverursachende Wirkung der Böden ist neben dem Feuchtegehalt, der die Leitfähigkeit des Bodens bestimmt, der pH-Wert. Verschiedene Bodenarten besitzen unterschiedliche Wasser- und Sauerstoffdurchlässigkeiten, sowie Unterschiede der gelösten Inhaltsstoffe wie Chloride oder Sulfate, wodurch sich das Korrosionsverhalten von Metallen in verschiedenen Böden stark unterscheidet. In der DIN 50929-3 werden Böden in vier verschiedene Bodenklassen mit Korrosionsbelastungen von sehr niedrig bis hoch unterteilt. Durch verschiedene Bodenanalysen und örtliche Gegebenheiten kann nach DIN 50929-3 zwar die Korrosivität eines Bodens bestimmt werden, jedoch ist die Reproduzierbarkeit eines Bodens (Prüfmediums) praktisch nicht möglich. Es gibt jedoch Überlegungen, wie die Einstellung einer Bodenklasse durch Verwendung von Normsand und der Zugabe von Stoffen erzielt werden kann, wodurch die Reproduzierbarkeit eines Bodens ermöglicht wird. T2 - 13. Sitzung des NA 062 01 77 AA „Korrosionsprüfverfahren“ CY - Neuss, Germany DA - 24.10.2019 KW - Korrosion KW - Böden KW - DIN 50929-3 KW - Zink KW - Soil KW - Zinc PY - 2019 AN - OPUS4-49459 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böhning, Martin A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard ED - Yaragalla, S. ED - Kumar Mishra, R. ED - Thomas, S. ED - Kalarikkal, N. ED - Maria, H. J. T1 - Multilayer Graphene/Elastomer Nanocomposites N2 - Elastomers are usually reinforced by large amount of fillers like carbon black (CB) or silica in order to improve various mechanical properties, such as Young’s modulus, hardness, tear resistance, abrasion resistance, and gas barrier properties. In recent years, such improvements were also obtained by using nanoparticles at significantly lower filler loadings. Graphene is a twodimensional (2D) sheet of a thickness in the atomic scale, composed of a honeycomb structure of sp2 carbon atoms. Besides significant mechanical reinforcement, graphene harbors the potential to be used as a multifunctional filler, as it can also increase the conductivity and weathering stability of elastomer matrices. Ultraviolet (UV) irradiation and oxidative agents can lead to the degradation of elastomers due to a multistep photooxidative process, including the formation of radicals. Carbon-based fillers have an influence on these reactions, as they can absorb UV radiation and act as radical scavengers. This chapter summarizes the results of our larger project on multilayer graphene (MLG)/elastomer nanocomposites, previously published, which present a comprehensive case study of MLG as a multifunctional nanofiller in elastomer/graphene nanocomposites. Different elastomeric matrices are compared in order to demonstrate the outstanding impact of MLG as a general benefit. The dependency of this effect on concentration is discussed in detail. Taking into account the key role of dispersion, different mixing procedures are compared, evaluating a facile implementation of graphene nanocomposites into conventional rubber processing. Finally, the most probable commercial uses of MLG nanofillers in combination with conventional CB are studied. The nanocomposites were prepared in the kg scale in order to obtain enough specimens to investigate various properties of the uncured and vulcanized rubbers at the highest quality level, including rheology, curing, morphology, several mechanical properties, abrasion, conductivity, gas permeation, burning behavior, and weathering stability. The structure property relationships are asserted and questioned, for example, by investigating the radical scavenging ability or aspect ratio of the MLG. This chapter illustrates the state of the art of graphene/rubber nanocomposites targeted for commercial mass applications. KW - Nanocomposite KW - Graphene KW - Rubber KW - Reinforcement KW - Durability KW - Masterbatch KW - Gas Barrier Properties KW - Conductivity PY - 2019 SN - 978-0-12-817342-8 SP - 139 EP - 200 PB - Elsevier AN - OPUS4-47408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions N2 - This second part of the review on defects as root cause of fatigue failure comprises the origin, the nature and the effects of non-metallic inclusions. Topics addressed are the different kinds of inclusions formed during the manufacturing process, various types of mis-match causing local stresses and, as a consequence, fatigue crack initiation, and effects of characteristics such as size, morphology, localization, spatial distribution and orientation of the defects on the fatigue behavior. Methods for inclusion counting and sizing are discussed along with statistical aspects necessary to be considered when evaluating structural components. KW - Non-metallic inclusions KW - Mis-match KW - Inclusion size KW - Inclusion cluster KW - Statistics PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.054 SN - 1350-6307 VL - 98 SP - 228 EP - 239 PB - Elsevier Ltd. AN - OPUS4-47459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chandra, K. A1 - Dörfel, Ilona A1 - Wollschläger, N. A1 - Kranzmann, Axel T1 - Microstructural investigation using advanced TEM techniques of inner ocide layers formed on T92 steel in oxyfuel environment N2 - T92 steel was oxidized at 650 °C for 1000 h in dry and wet oxyfuel gases. The microstructure of inner oxide layer was investigated using scanning transmission electron microscopy and energy dispersive spectroscopy on thin lamellas of oxide cross-sections. The oxides were composed of fine equiaxed grains and separated into Fe-rich and Cr-rich regions. Fe-rich regions were wustite and iron sulphide while Cr-rich regions consisted of Fe-Cr spinel with different stoichiometries. Precipitates of (W,Mo)-rich oxides were formed within the oxide scale and beneath the oxide/alloy interface. Often iron sulphide and (W,Mo)-rich oxide were surrounded by Cr-rich spinel. KW - Steel KW - STEM KW - High temperature corrosion KW - Oxidation KW - Internal oxidation PY - 2019 DO - https://doi.org/10.1016/j.corsci.2018.12.008 SN - 0010-938X SN - 1879-0496 VL - 148 SP - 94 EP - 109 PB - Elsevier AN - OPUS4-47423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -