TY - CONF A1 - Altmann, Korinna T1 - Stakeholder Workshop – Plastictrace WP1 N2 - The talk is about WP1 in the PlasticTrace project funded by Euromat. The projects harmonizes microplastic analysis by developing SOPs and reference materials. WP1 is responsible for material selection and preparation. All particles are homogeneity and stability checked according to ISO guide 35. T2 - Stakeholder workshop of PlasticTrace project CY - Online meeting DA - 14.12.2022 KW - Microplastic KW - Microplastics standardisation KW - Reference materials PY - 2022 AN - OPUS4-56772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Müller, A. A1 - Kittner, Maria A1 - Braun, U. T1 - Plastik in Böden: Mikroplastik-Ergebnisse N2 - In diesem Vortrag geht um die Vorstellung der Ergebnisse des UBA Projektes Plastik in Böden. Es werden Mikroplastik-Gehalte in verschiedenen Böden präsentiert. T2 - Fachgespräch "Plastik in Böden" CY - Online meeting DA - 28.03.2022 KW - Mikroplastik KW - Mikroplastik Böden KW - Mikroplastik-Analytik PY - 2022 AN - OPUS4-54648 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Visileanu, E. A1 - Wiesner, Yosri A1 - Miclea, P.-T. T1 - Detektion von Mikroplastik N2 - In dem Vortrag geht es um die Möglichkeiten der Detektion von Mikroplastik im Allgemeinen. Es werden Beispiele für die Luft gezeigt. T2 - VDI-Workshop „Mikroplastik in der Außenluft – Was wir wissen und was wir (noch) nicht wissen CY - Online meeting DA - 15.11.2022 KW - Mikroplastik KW - Mikroplastik in Luft KW - Detektion von Mikroplastik PY - 2022 AN - OPUS4-56289 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Mikroplastik – Ein Problem für die Menschheit? N2 - Mikroplastik findet sich in Ozeanen, Seen, Flüssen und Bächen. Es kann in unserem Boden, in der Luft und sogar in Organismen nachgewiesen werden. Jedes Jahr werden weltweit Millionen Tonnen freigesetzt. Doch wo und wie landet Mikroplastik in der Umwelt? Und wie können wir diese winzigen Partikel nachweisen? T2 - Berlin Science Week CY - Berlin, Germany DA - 01.11.2021 KW - Mikroplastik KW - TED-GC/MS PY - 2021 AN - OPUS4-53734 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Uzunlu, Büsra A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Waniek, Tassilo T1 - Update – Milling and weathering of granules N2 - The talk aims to describe the production of microplastic particles as test material and the additional weathering for aged particles. T2 - PlasticsFate meeting CY - Online meeting DA - 12.11.2021 KW - Microplastic KW - Cryo milling KW - Aged particles PY - 2021 AN - OPUS4-53737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Microplastics at BAM: TED-GC/MS and reference materials N2 - Thsi talk aims to present the activities of microplastic analysis at BAM according to TED-GC/MS and reference materials developement. T2 - Webinar BAM / University of Birmingham CY - Online meeting DA - 15.06.2021 KW - Microplastic KW - TED-GC/MS KW - Reference materials PY - 2021 AN - OPUS4-53738 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Systemverständnis und Untersuchungsstrategien von Kunststoffeinträgen in die Umwelt – Ergebnisse des RUSEKU-Forschungsprojektes N2 - Ziel des Vortrages ist die Vermittlung der Herausforderungen der Mikroplastik-Analytik sowie der Harmonisierung der Analytik und des Ergebnistransfers in die Normung. T2 - Jahresabschluss-Sitzung GA "Mensch und Umwelt" CY - Online meeting DA - 24.11.2021 KW - Mikroplastik KW - Mikroplastik-Analytik PY - 2021 AN - OPUS4-53830 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Mikroplastik Referenzmaterial und erste Vergleichsuntersuchungen N2 - Hierbei geht es um die Vorstellung von ersten Möglichkeiten um Referenzmaterial für die Mikroplastik-Analytik herzustellen und die Ergebnisse erster Vergleichsversuche. T2 - EUROLAB-D Workshop: Mikroplastik in der Praxis CY - Online meeting DA - 30.11.2021 KW - Mikroplastik KW - Referenzmaterial KW - Vergleichsversuche PY - 2021 AN - OPUS4-53880 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almalla, A. A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - In Situ Atomic Force Microscopy Analysis of the Corrosion Processes at the Buried Interface of an Epoxy-like Model Organic Film and AA2024-T3 Aluminum Alloy N2 - The application of characterization methods with high spatial resolution to the analysis of buried coating/metal interfaces requires the design and use of model systems. Herein, an epoxy-like thin film is used as a model coating resembling the epoxy-based coatings and adhesives widely used in technical applications. Spin coating is used for the deposition of a 30 nm-thin bilayer (BL) composed of poly-(ethylenimine) (PEI) and poly[(o-cresyl glycidyl ether)-co-formaldehyde] (CNER). Fourier-transform infrared spectroscopy (FTIR) results confirm that the exposure of coated AA2024-T3 (AA) samples to the corrosive electrolyte solution does not cause the degradation of the polymer layer. In situ atomic force microscopy (AFM) studies are performed to monitor local corrosion processes at the buried interface of the epoxy-like film and the AA2024-T3 aluminum alloy surface in an aqueous electrolyte solution. Hydrogen evolution due to the reduction of water as the cathodic corrosion reaction leads to local blister formation. Based on the results of the complementary energy-dispersive X-ray spectroscopy (EDX) analysis performed at the same region of interest, most of the hydrogen evolved originates at the vicinity of Mg-containing intermetallic particles. KW - Scanning Kelvin probe force microscopy KW - Aluminum alloys KW - Buried interfaces KW - In situ atomic force microscopy KW - Local corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546932 DO - https://doi.org/10.1002/adem.202101342 SN - 1438-1656 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-54693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almalla, A. A1 - Hertwig, Andreas A1 - Fischer, Daniel A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - Development of layer-by-layer assembled thin coatings on aluminium alloy AA2024-T3 for high resolution studies of local corrosion processes N2 - The aim of this study is to develop nanometer-thin epoxy-based films on aluminium alloy AA2024-T3 as a model coating system for high resolution corrosion studies. Spin coating was used for the layer-by-layer (LbL) deposition of poly-(ethylenimine) (PEI) and poly([o-cresyl glycidyl ether]-co-formaldehyde) (CNER) bilayers. The film chemistry and the cross-linking process were characterized by means of Fourier-transform infrared spectroscopy (FTIR). Ellipsometric data confirmed the linear increase of film thickness. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) results indicate the improvement of the film barrier properties with increasing film thickness. Mapping of the topography and the volta potential was performed by means of scanning Kelvin probe force microscopy (SKPFM). The results indicate the presence of a homogeneous film structure, while the intermetallic phases can still be identified below the coating. The SKPFM Analysis confirmed that the model films are suitable for investigation of corrosion processes at the coating/metal interface. KW - Spectroscopy KW - Coatings KW - Electrochemistry KW - Microscopy KW - Resins PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514627 DO - https://doi.org/10.1002/app.49826 SN - 0021-8995 VL - 137 IS - 48 SP - e49826-1 EP - e49826-9 PB - Wiley CY - New York, NY AN - OPUS4-51462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aliyah, K. A1 - Prehal, C. A1 - Diercks, J. S. A1 - Diklić, N. A1 - Xu, L. A1 - Ünsal, S. A1 - Appel, C. A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Guizar-Sicairos, M. A1 - Herranz, J. A1 - Gubler, L. A1 - Büchi, F. N. A1 - Eller, J. T1 - Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering N2 - The complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scattering (SAXS). This method leverages the differences in electron densities between the solid catalyst matrix and the liquid water filled pores of the CL under both dry and wet conditions. This approach is validated using ex situ wetting experiments, which aid the study of the transient saturation of a CL in a flow cell configuration in situ. The azimuthally integrated scattering data are fitted using 3D morphology models of the CL under dry conditions. Different wetting scenarios are realized in silico, and the corresponding SAXS data are numerically simulated by a direct 3D Fourier transformation. The simulated SAXS profiles of the different wetting scenarios are used to interpret the measured SAXS data which allows the derivation of the most probable wetting mechanism within a flow cell electrode. KW - Polymer electrolyte fuel cell KW - Water management KW - Catalyst layer KW - Representative morphology modeling KW - Small-angle X-ray scattering KW - MOUSE KW - SAXS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575973 DO - https://doi.org/10.1021/acsami.3c00420 SN - 1944-8244 VL - 15 IS - 22 SP - 26538 EP - 26553 PB - ACS Publications AN - OPUS4-57597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ali, Naveed Zafar A1 - Campbell, B. J. A1 - Jansen, M. T1 - Topotactic, pressure-driven, diffusion-less phasetransition of layered CsCoO2to a stuffedcristobalite-type configuration N2 - CsCoO2, featuring a two-dimensional layered architecture of edge- and vertex-linked CoO4tetrahedra, is subjected to a temperature-driven reversible second-order phase transformation at 100 K, which corresponds to a structuralrelaxation with concurrent tilting and breathing modes of edge-sharing CoO4tetrahedra. In the present investigation, it was found that pressure induces a phase transition, which encompasses a dramatic change in the connectivity ofthe tetrahedra. At 923 K and 2 GPa, beta-CsCoO2 undergoes a first-order phasetransition to a new quenchable high-pressure polymorph,alpha-CsCoO2. It is built up of a three-dimensional cristobalite-type network of vertex-sharing CoO4 tetrahedra. According to a Rietveld refinement of high-resolution powderdiffraction data, the new high-pressure polymorph gamma-CsCoO2 crystallizes in the tetragonal space groupI41/amd:2 (Z= 4) with the lattice constants a= 5.8711 (1) and c= 8.3214 (2) A, corresponding to a shrinkage in volume by 5.7% compared with the ambient-temperature and atmospheric pressure-CsCoO2polymorph.The pressure-induced transition (beta>gamma) is reversible;-CsCoO2 stays metastable under ambient conditions, but transforms back to the-CsCoO2structure upon heating to 573 K. The transformation pathway revealed isremarkable in that it is topotactic, as is demonstrated through a clean displacive transformation track between the two phases that employs the symmetry oftheir common subgroupPb21a(alternative setting of space group No. 29 that matches the conventional-phase cell). KW - Structures under extreme conditions KW - Topotactic phase transitions KW - Transformation pathways KW - Oxocobaltates KW - Cristobalite frameworks PY - 2019 DO - https://doi.org/10.1107/S2052520619008436 SN - 2052-5206 VL - 75 IS - 4 SP - 704 EP - 710 PB - International Union of Crystallography AN - OPUS4-48782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - Prinz, Carsten A1 - Zimathies, Annett A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Hydrated and dehydrated Ca-coordination polymers based on benzene-dicarboxylates: mechanochemical synthesis, structure refinement, and spectroscopic characterization N2 - A series of Ca-based coordination polymers were prepared mechanochemically by milling Ca(OH)2 with phthalic acid (H2oBDC), isophthalic acid (H2mBDC), and terephthalic acid (H2pBDC). The hydrated compounds [Ca(oBDC)(H2O)], [Ca(mBDC)(H2O)3.4], and [Ca(pBDC)(H2O)3] were prepared for the first time via mechanochemical routes. The refined structures were validated by extended X-ray absorption data. The new dehydrated compound [Ca(oBDC)] (1-H2O), obtained after the thermal post-treatment of 1 in a reversible phase transition process, was determined ab initio based on the powder X-ray diffraction (PXRD) data. The materials were thoroughly characterized using elemental analysis, thermal analysis, and spectroscopic methods: magic-angle spinning NMR and attenuated total reflection-infrared spectroscopy. The specific surface areas and sorption properties of the hydrated and dehydrated samples were determined using the isotherms of gas sorption and dynamic vapor sorption measurements. KW - Mechanochemistry KW - XRD PY - 2018 UR - http://pubs.rsc.org/en/content/articlehtml/2017/ce/c7ce01906h DO - https://doi.org/10.1039/C7CE01906H VL - 20 SP - 946 EP - 961 PB - Royal Society of Chemistry AN - OPUS4-44440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Prinz, Carsten A1 - Scholz, Gudrun A1 - Kemnitz, Erhard A1 - Emmerling, Franziska T1 - Ca-, Sr-, and Ba-Coordination polymers based on anthranilic acid via mechanochemistry N2 - Ca-, Sr-, and Ba-Based coordination polymers (CPs) were prepared mechanochemically by milling metal-hydroxide samples with anthranilic acid (oABAH). {[Ca(oABA)2(H2O)3]}n consists of one-dimensional polymeric chains that are further connected by a hydrogen-bonding network. {[Sr(oABA)2(H2O)2]·H2O}n is a one-dimensional CP in which water molecules bridge Sr2+ ions and increase the dimensionality by building an extended network. {[Ba(oABA)2(H2O)]}n crystallizes as a two-dimensional CP comprising one bridging water molecule. The cation radii influence the inorganic connectivity and dimensionality of the resulting crystal structures. The crystal structures were refined from powder X-ray diffraction data using the Rietveld method. The local coordination environments were studied via extended X-ray absorption fine structure (EXAFS) measurements. The compounds were further characterized using comprehensive analytical methods such as elemental analysis, thermal analysis, MAS NMR, imaging, and dynamic vapor sorption (DVS) measurements. Compounds 1, 2, and 3 exhibit small surface areas which decrease further after thermal annealing experiments. All compounds exhibit a phase transformation upon heating, which is only reversible in 3. KW - Mechanochemistry KW - XRD PY - 2019 DO - https://doi.org/10.1039/c9dt00991d SN - 1477-9226 SN - 1477-9234 VL - 48 IS - 19 SP - 6513 EP - 6521 PB - Royal Society of Chemistry AN - OPUS4-48014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akhmetova, Irina A1 - Schuzjajew, K. A1 - Wilke, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Rademann, K. A1 - Roth, C. A1 - Emmerling, Franziska T1 - Synthesis, characterization and in situ monitoring of the mechanochemical reaction process of two manganese(II)-phosphonates with N-containing ligands N2 - Two divalent manganese aminophosphonates, manganese mono (nitrilotrimethylphosphonate) (MnNP3) and manganese bis N-(carboxymethyl)iminodi(methylphosphonate)) (Mn(NP2AH)2), have been prepared by mechanochemical synthesis and characterized by powder X-ray diffraction (PXRD). The structure of the novel compound Mn(NP2AH)2 was determined from PXRD data. MnNP3 as well as Mn(NP2AH)2 exhibits a chain-like structure. In both cases, the manganese atom is coordinated by six oxygen atoms in a distorted octahedron. The local coordination around Mn was further characterized by extended X-ray absorption fine structure. The synthesis process was followed in situ by synchrotron X-ray diffraction revealing a three-step reaction mechanism. The asprepared manganese(II) phosphonates were calcined on air. All samples were successfully tested for their suitability as catalyst material in the oxygen evolution reaction. KW - Mechanochemistry KW - In situ KW - XRD PY - 2018 DO - https://doi.org/10.1007/s10853-018-2608-6 SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 19 SP - 13390 EP - 13399 PB - Springer Science + Business Media B.V. AN - OPUS4-45673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Schutjajew, Konstantin A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of metal phosphonates N2 - The exploration of metal phosphonates chemistry has gained great interest during the last decades, because of their structural diversity. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reactions (OER). Here, we present the in situ investigation of mechanochemical syntheses of different manganese phosphonates by synchrotron X-ray diffraction. Nitrilotri(methylenephosphonic acid) and N,N-Bis(phosphonomethyl)glycine were chosen as ligands. The liquid-assisted milling process can be divided into three steps, including an amorphous stage. One of the products has not been obtained by classical solution chemistry before. These metal phosphonates and/or their derivatives are considered to be active in electrochemical energy conversion. The verification of their applicability is one of the topics of our resent research. T2 - Fundamental Bases of Mechanochemical Technologies CY - Novosibirsk, Russia DA - 25.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - Thermography PY - 2018 AN - OPUS4-46996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Emmerling, Franziska A1 - Schutjajew, Konstantin A1 - Roth, Christina T1 - In situ investigation of milling reactions and structure determination of the products using X-ray diffraction N2 - Mechanochemistry is a versatile approach for green and fast synthesis of pure substances. By milling the reactants, various organic, inorganic, and metal-organic compounds can be obtained in high yields. Although mechanochemistry is widely used, the underlying mechanisms are not fully understood making mechanochemical reactions difficult to predict. Metal phosphonates are metal-organic compounds accessible by grinding. Because of their structural diversity, the exploration of the chemistry of metal phosphonates has gained considerable interest during the last decades. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reaction (OER). Here, we present the in situ investigation of the mechanochemical synthesis of a manganese(II)-phosphonate by synchrotron X-ray diffraction and thermography. The product has not been obtained by classical solution chemistry before and its crystal structure was determined from PXRD data. The milling process can be divided into different steps, with the product crystallization corresponding with the highest temperature rise. The activity of this metal phosphonate towards OER was measured and is presented here. T2 - International School of Crystallography - 52nd Course: Quantum Crystallography CY - Erice, Italy DA - 1.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - OER KW - Thermography PY - 2018 AN - OPUS4-46998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Haferkamp, Sebastian A1 - Schutjajew, Konstantin A1 - Roth, Christina A1 - Emmerling, Franziska T1 - In situ investigation of mechanochemical syntheses of manganese phosphonates with N-containing ligands N2 - Mechanochemistry is a versatile approach for green and fast synthesis of pure substances. The exploration of the chemistry of metal phosphonates has gained considerable interest during the last decades due to their structural diversity. We synthesized manganese phosphonates in milling reactions. The mechanochemical reactions were investigated in situ to reveal the underlying mechanisms. T2 - Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - In situ KW - Thermography PY - 2018 AN - OPUS4-46999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmed, R. A1 - Vaishampayan, A. A1 - Cuellar-Camacho, J. L. A1 - Wight, D. J. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang A1 - Grohmann, E. A1 - Haag, R. A1 - Wagner, O. T1 - Multivalent Bacteria Binding by Flexible Polycationic Microsheets Matching Their Surface Charge Density N2 - Aiming at the overall negative surface charge of bacteria, a new strategy of antibacterial agents based on large polymer-modified graphene oxide (GO) sheets is assessed. The presented flexible, polycationic Sheets match the size and charge density of the Escherichia coli surface charge density (2 × 1014 cm−2). These matching parameters create an unspecific but very strong bacteria adsorber by multivalent, electrostatic attraction. Their interaction with bacteria is visualized via atomic force and confocal microscopy and shows that they effectively bind and wrap around E. coli cells, and thereby immobilize them. The incubation of Gram-negative and -positive bacteria (E. coli and methicillin-resistant Staphylococcus aureus, MRSA) with these polycationic sheets leads to the inhibition of proliferation and a reduction of the colony forming bacteria over time. This new type of antibacterial agent acts in a different mode of Action than classical biocides and could potentially be employed in medicinal, technical, or agriculture applications. The presented microsheets and their unspecific binding of cell interfaces could further be employed as adsorber material for bacterial filtration or immobilization for imaging, analysis, or sensor technologies. KW - Surface charge KW - Bacteria KW - Graphene oxide KW - Escherichia coli KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509651 DO - https://doi.org/10.1002/admi.201902066 VL - 7 IS - 15 SP - 1902066 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Acosta-Zepeda, C. A1 - Saavedra, S. A1 - Bonse, Jörn A1 - Haro-Poniatowski, E. T1 - Modelling of single UV nanosecond pulsed laser surface modifications of silicon N2 - Irradiation with a single spatially Gaussian-shaped nanosecond laser pulse in the melting regime can result in a characteristic annular change in the surface morphology of crystalline silicon. This has been verified experimentally in a variety of situations, where dimple-shaped surface topographies are produced. In a recent work we have investigated the induced changes in the surface topography upon exposure to wavelengths in the visible and near infrared spectral region. Irradiation in the UV requires a more detailed analysis due to the enhanced absorption of the material. In the present analysis, we determine under which conditions our previous model can be used and the corresponding results are presented. KW - Laser KW - Silicon KW - Surface modification PY - 2020 DO - https://doi.org/10.1088/1555-6611/ab9b2c SN - 1555-6611 SN - 1054-660X VL - 30 IS - 8 SP - 086003-1 EP - 086003-4 PB - IOP Publishing / Astro Ltd CY - Bristol, United Kingdom AN - OPUS4-51022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -