TY - JOUR A1 - Fidan, Z. A1 - Wende, A. A1 - Resch-Genger, Ute T1 - Visible and red emissive molecular beacons for optical temperature measurements and quality control in diagnostic assays utilizing temperature-dependent amplification reactions N2 - Quality control requirements imposed on assays used in clinical diagnostics and point-of-care-diagnostic testing (POCT), utilizing amplification reactions performed at elevated temperatures of 35 to 95 °C are very stringent. As the temperature of a reaction vessel has a large impact on the specificity and sensitivity of the amplification reaction, simple tools for local in situ temperature sensing and monitoring are required for reaction and assay control. We describe here a platform of stem-and-loop structured DNA hairpins (molecular beacons, MBs), absorbing and emitting in the visible and red spectral region, rationally designed for precise temperature measurements in microfluidic assays for POCT, and their ap-plication for temperature measurements in a common DNA-based molecular biological assay utilizing thermophilic helicase-dependent amplification (tHDA). Spectroscopic studies of these MBs, rationally designed from DNA se-quences of different thermal stabilities, chosen not to interact with the DNA probes applied in the nucleic acid amplification assay, and temperature-dependent fluorescence measurements of MB-assay mixtures revealed the suitability of these MBs for temperature measurements directly in such an assay with a temperature resolution of about 0.5 °C without interferences from assay components. Combining two spectrally distinguishable MBs provides a broader response range and an increase in temperature sensitivity up to 0.1 °C. This approach will find future application for temperature monitoring and quality control in commercialized diagnostics assays using dried reagents and microfluidic chips as well as assays read out with tube and microplate readers and PCR detection systems for temperature measurements in the range of 35 to 95 °C. KW - Miniaturization KW - Fluorescence KW - Temperature KW - Sensor KW - Assay KW - Microfluidics KW - DNA KW - Dye KW - Molecular beacon KW - Molecular diagnostics PY - 2016 DO - https://doi.org/10.1007/s00216-016-0088-6 SN - 1618-2642 VL - 409 IS - 6 SP - 1519 EP - 1529 PB - Springer CY - Heidelberg AN - OPUS4-39589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Geissler, D. A1 - Wegmann, M. A1 - Gaponik, N. A1 - Eychmüller, A. T1 - Semiconductor nanocrystals with VIS and NIR/IR emission - spectroscopy properties and surface chemistry N2 - Semiconductor nanocrystals with a spherical (QDs) core and a spherical or a rod-shaped Shell, u.a., so-called Quantum dot-Quantum rods (QDQRs) are increasingly used as fluorescent Reporters or optically active components in the life and material science, e.g., in solid state lightening including Plasma Displays. (1,2) Morever, there is an increasing interest in materials with emission >800 nm for bioanalysis, medical diagnostics, and safety barcodes. Prerequisites for the mechanistic understanding of nonradiativ decay channels needed for the rational design of improved nanomaterials and the comparison of material Performance are reliable fluorescence measurements and validated methods for the assessment of their surface chemistry. (3,4) The latter is of particular importance for nanocrystalline Emitters, where surface states and the accessibility of emissive states by quenchers largely control photoluminescence properties. (5) Here, we present results from systematic spectroscopic studies including absolutely measured photolumunescence Quantum yields of different vissible and NIR emisisve QD and QDQRs Systems of varying particle architecture size and surface chemistries in Dispersion and embedded in salt crystals. (6,7) T2 - MCare 2017 CY - Jeju, South Korea DA - 20.02.2017 KW - Semiconductor quantum dot KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Photophysics KW - Quantum yield KW - Single particle PY - 2017 AN - OPUS4-43133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Pilch, A. A1 - Würth, Christian A1 - Kaiser, Martin A1 - Wawrzynczyk, D. A1 - Kurnatowska, M. A1 - Arabasz, S. A1 - Prorok, K. A1 - Samoc, M. A1 - Strek, W. A1 - Bednarkiewicz, A. T1 - Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core-shell ß-NaYF4 nanoparticles by dopant distribution and spacing N2 - At the core of luminescence color and lifetime Tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the Impact of the particle architecture for commonly used sensitizer (S) and activator (A) Ions. In this respect, a series of core@Shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@..., ...@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-Shell NPs. As refealed by quantitative steady-state and time-resolved luminescence studies, the relative spatial Distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical Impact on ther luminescence characteristics. Although the increased amount of Yb3+ Ions boosts UCNP Performance by amplifying the Absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy Migration to the surface, thereby reducing the Overall energy Transfer Efficiency to the activator ions. The results provide yet another proof that UC Phosphor chemistry combined with materials Engineering through intentional core@shell structures may help to fine-tune the luminescence Features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and Display technologies. KW - Fluorescence KW - Upconversion KW - NIR KW - Nonlinear KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Ho(III) KW - Yb(III) KW - Mechanism KW - Absolute flourescence KW - Excitation power density dependence PY - 2017 DO - https://doi.org/10.1002/smll.201701635 SN - 1613-6810 VL - 13 IS - 47 SP - 1701635, 1 EP - 13 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-43629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Ren, J. A1 - Weber, F. A1 - Choudhury, S. A1 - Weigert, Florian A1 - Ritter, E. A1 - Cao, D. A1 - Bande, A. A1 - Puskar, L. A1 - Schade, U. A1 - Aziz, E. F. A1 - Petit, T. T1 - Effect of surface chemistry on optical, chemical and electronic properties of blue luminescent graphene quantum dots N2 - Due to their unique physical properties, particularly their electronic and luminescent properties, graphene quantum dots (GQDs) are expected to be suitable for a wide range of applications in bioimaging, electro-optical and photonic materials or energy harvesting among others.1 Tuning the surface chemistry provides an efficient approach to modulate the fluorescence and distinct electronic properties of GQDs.2 Nevertheless, the role of surface chemistry on the electronic structure of GQDs remains poorly understood. In this presentation, we will compare systematically the electronic and chemical structures of GQDs functionalized with carboxylic and aminated groups to those of non-functionalized GQDs, combining theoretical and experimental approaches, here various photon-based spectroscopies. First, the electronic structure of GQDs was characterized by soft X-ray absorption (XA) and X-ray emission (XE) spectroscopies, probing unoccupied and occupied electronic states, respectively, at the carbon K edge for the first time. The interpretation of the XA/XE spectra was done based on theoretical calculations. Then, the chemical structure of the GQDs was characterized in situ by ATR-FTIR in water, thereby accounting for the importance of the interface between GQDs and water believed to play a central role in the chemical reactivity and the optical properties. We previously demonstrated that monitoring the OH vibrations of water molecules during exposure to humid air was a powerful method to probe H-bonding environment around carbon nanomaterials.3 For GQDs, clear surface-dependent water adsorption profiles are observed and discussed. Finally, UV/Vis absorption and photoluminescence measurements were done to characterize the optical properties of these GQDs. Our results suggest that the surface chemistry of the GQDs affects significantly their electronic structure and optical properties. These findings will contribute to an improved understanding of the structure–activity relationship of GQDs and other carbon nanomaterials with surface modifications. T2 - MRS Fall Meeting 2017 CY - Boston, USA DA - 26.11.2017 KW - Carbon KW - Nanoparticle KW - Fluorescence KW - NIR KW - IR KW - Surface chemistry KW - Deactivation pathways KW - Lifetime KW - Size KW - Giant carbon dot KW - Quantum yield PY - 2017 AN - OPUS4-43494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martynenko, Irina A1 - Litvin, A.P. A1 - Purcell-Milton, F. A1 - Baranov, A. V. A1 - Fedorov, A.V. A1 - Gun´ko, Y.K. T1 - Application of semiconductor quantum dots in bioimaging and biosensing N2 - In this review we present new concepts and recent progress in the application of semiconductur quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing. We analyze the biologically relevant properties of QDs focusing on the following topics: QD surface treatment and stability labeling of cellular structures and receptors with QDs, incorporation of QDs in living cells, cytotoxicity of QDs and influence of the biolocical environment on the biological and optical properties of QDs. Initially, we consider utilization of QDs as agants in high-resolution bioimaging techniques that can provide information at the molecular levels. The deverse range of modern live-cell QD-based imaging techniques with resolution far beyond the diffraction limit of light is examined. In each technique, we discuss the pros and cons of QD use and deliberate how QDs can be further engineered to facilitate their application in the respective imaging techniques and to produce significant improvements in resolution. Then we review QD-based point-of-care bioassays, bioprobes, and biosensors designed in different formats ranging from analytic biochemistry assays and ELISA, to novel point-of-care smartphone integrated QD-based biotests. Here, a wide range of QD-based fluorescence bioassays with optical transduction, electrochemiluminescence and photoelectrochemical assays are discussedc. Finally, this review provides an analysis of the prospects of application of QDs in selected important Areas of biology. KW - Fluorescence KW - Semiconductor quantum dot KW - Imaging KW - Quantification KW - Nanoparticle KW - NIR KW - IR KW - Quantum yield KW - Method KW - Microscopy KW - Assay KW - Bioconjugate PY - 2017 DO - https://doi.org/10.1039/c7tb01425b VL - 5 IS - 33 SP - 6701 EP - 6727 PB - Royal Society of Chemistry AN - OPUS4-43027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kraft, Marco A1 - Kaiser, Martin T1 - Absolute Fluorescence Measurements > 800 nm - Setup Design, Challenges, and Characterization of Semiconductor and Lanthanide-based Nanocrystals N2 - There is an increasing interest in optical reporters like semiconductor and lanthanide-based nanocrystals with emission > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, and safety barcodes. Mandatory for the comparison of different emitter classes and the rational design of the next generation of reporters for the short wavelength infrared (SWIR) region are reliable and quantitative photoluminescence measurements in this challenging wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as for upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Such measurements are currently hampered by the lack of suitable methods and standards for instrument calibration and validation as well as by the lack of quantum yield standards with emission > 800 nm and especially > 1000 nm. In this respect, we present the design of integrating sphere setups for absolute and excitation power densitydependent measurements of emission spectra and quantum yields in the wavelength region of 650 to 1650 nm including calibration strategies and first candidates for potential fluorescence standards. Subsequently, the photoluminescence properties of different types of nanocrystals are presented and discussed including absolute photoluminescence measurements of upconversion and down conversion emission in different solvents. T2 - MRS 2017 CY - Boston, MA, USA DA - 26.11.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Semiconductor quantum dot KW - SWIR KW - Quantum yield KW - Energy transfer KW - Size PY - 2017 AN - OPUS4-43202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Martin A1 - Kraft, Marco A1 - Pauli, Jutta A1 - Muhr, V. A1 - Hirsch, T. T1 - Challenges and examples for quantitative fluorescence measurements > 800 nm with semiconductor and lanthanide-doped nanocrystals N2 - There is an increasing interest in molecular and nanoscale with emission > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, bioimaging, and safety barcodes. Mandatory for the comparison of different emitter classes and the rational design of the next generation of reporters for the short wavelength infrared (SWIR) Region are reliable and quantitative photoluminescence measurements in this challenging wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as lanthanide-based upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable photoluminescence quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Such measurements are currently hampered by the lack of suitable methods and standards for instrument calibration and validation and quantum yield standards with emission > 800 nm and especially > 1000 nm. In this respect, we present the design of integrating sphere setups for absolute and excitation power density-dependent measurements of emission spectra and photoluminescence quantum yields in the wavelength Region of 650 to 1650 nm including calibration strategies and first candidates for potential fluorescence standards. Subsequently, the photoluminescence properties of different types of nanocrystals are presented including the upconversion and downconversion emission of differently sized and surface functionalized lanthanide-doped nanoparticles and photoluminescence quenching effects are quantified. T2 - SHIFT 2017 CY - Teneriffa, Spain DA - 13.11.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Semiconductor quantum dot KW - SWIR KW - Quantum yield PY - 2017 AN - OPUS4-43203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, Jutta A1 - Hoffman, Katrin T1 - Instrument Calibration and Standardization of Fluorescence Measurements in the UV/vis/NIR/IR N2 - Comparison of fluorescence measurements performed on different fluorescence instruments, analyte quantification from fluorescence intensities as well as the determination of fluorescence quantum yields require instrument calibration and consideration of the wavelength-dependent instrument-specific quantities spectral photon flux reaching the sample and spectral responsivity. Here, we present guidelines and recommendations for the qualification of fluorescence instruments and introduce suitable chromophore-based reference materials. Moreover, the design concepts of the different BAM fluorescence standards are discussed. T2 - COST 2017 CY - Turku, Finland DA - 03.04.2017 KW - Fluorescence KW - Dye KW - Glass KW - Calibration KW - Fluorescence standard KW - Integrating sphere spectroscopy KW - Fluorescence quantum yield KW - Instrument qualification KW - Quality assurance KW - NIR KW - IR PY - 2017 AN - OPUS4-43174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Kraft, Marco A1 - Würth, Christian A1 - Kaiser, Martin A1 - Muhr, V. A1 - Hirsch, T. T1 - Effect of Particle Size and Excitation Power Density on the Luminescence Efficiency of Upconversion Nanocrystals in Different Dispersion Media N2 - Upconversion nanoparticles (UCNPs) offer new strategies for luminescence-based sensing and imaging. One of the best studied materials are ..-NaYF4 UCNPs doped with 20 % Yb3+ and 2 % Er3+, which efficiently convert 976 nm light to photons emitted at 540 nm, 655 nm, and 845 nm, respectively, reveal long luminescence lifetimes (> 100 µs), are photostable and chemically inert. Their upconversion (UC) luminescence (UCL) properties are, however, strongly influenced by particle size, surface chemistry, and microenvironment. In addition, the multiphotonic absorption processes responsible for UCL render UCL excitation power density (..) dependent. This makes quantitative UCL measurements as well as the determination of UC quantum yields (.UC) very challenging. The rational design of brighter UCNPs particle architectures and the interest in identifying optimum particle architectures for FRET-based sensing and imaging schemes, which often rely on core-only UCNPs to minimize donor-acceptor distances, encouraged us to assess the influence of particle size and P on UCL. Here, we present the photophysical properties of a series of hexagonal NaYF4 UCNPs with sizes from 10 to 43 nm with different surface ligands dispersed in organic solvents and water studied by steady state and time-resolved fluorometry as well as quantitatively by integrating sphere spectrometry with P varied over about three orders of magnitude. Our results underline the need for really quantitative luminescence studies for mechanistic insights and the potential of high P to compensate for UCL quenching due to high energy phonons and surface effects. T2 - 15th Conference on Methods and Applications in Fluorescence CY - Bruges, Belgium DA - 10.09.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Photophysics KW - Quantum yield PY - 2017 AN - OPUS4-43181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Weigert, Florian A1 - Frenzel, Florian A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Martynenko, Irena A1 - Dhamo, Lorena T1 - Photoluminescence Properties of Different Types of Nanocrystals at the Ensemble and Single Emitter Level N2 - Correlating the photoluminescence (PL) properties of nanomaterials like semiconductor nanocrystals (QDs) and upconversion nanocrystals (UCNPs) assessed in ensemble studies and at the single particle level is increasingly relevant for applications of these nanomaterials in the life sciences like bioimaging studies or their use as reporters in microfluidic assays. Here we present a comparison of the spectroscopic properties of ensembles and single emitters for QDs like II/VI QDs and cadmium-free AIS/ZnS QDs as well as different UCNPs. The overall goal of this study was to derive particle architectures well suited for spectroscopic and microscopic applications. T2 - BIOSSPIE CY - San Francisco, CA, USA DA - 02.02.2019 KW - Quantum yield KW - Nanomaterial KW - Photoluminescence KW - Absolute fluorometry KW - Integrating sphere spectroscopy, KW - NIR KW - IR KW - Fluorescence KW - Nanoparticle KW - Semiconductor KW - Quantum dot KW - Single particle spectroscopy KW - Surface chemistry PY - 2019 AN - OPUS4-47358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Martin A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Relative and Absolute Methods for Measuring Photoluminescence Quantum Yields of UV/vis/NIR Emitters N2 - One of the key spectroscopic performance parameters of molecular and particulate emitters is the photoluminescence quantum yield (PL QY) that provides a direct measure for the number of emitted per absorbed photons. This triggered the interest in methods suitable for measuring this property for emitters in various environments in the UV/vis/NIR and above 1000 nm as well as on the ensemble and single emitter level. Moreover, for nonlinear emitters like lanthanide-based upconversion nanocrystals methods including instrumentation for power density-dependent PL QY studies are required. An overview of the research activities in Division Biophotonics of BAM is given and suitable relative and absolute methods for the deter-mination of PL QY of organic dyes and different types of application-relevant nanomaterials in dispersion and in the solid state are presen-ted. This covers also the design and calibration of integrating sphere setups, achievable uncertainties, and candidates for PL QY reference materials. T2 - OSRAM Veranstaltung CY - Regensburg, Germany DA - 09.01.2019 KW - Quantum yield KW - Calibration KW - Reference material KW - Uncertainty KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Nanoparticle KW - Dye PY - 2019 AN - OPUS4-47263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ren, J. A1 - Weigert, Florian A1 - Weber, F. A1 - Wang, Y. A1 - Choudhury, S. A1 - Xiao, J. A1 - Lauermann, I. A1 - Resch-Genger, Ute A1 - Bande, A. A1 - Petit, T. ED - Petit, Tristan T1 - Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots N2 - Carbon dots have attracted much attention due to their unique optical, chemical and electronic properties enabling a wide range of applications. The properties of carbon dots can be effectively adjusted through modifying their chemical composition. However, a major challenge remains in understanding the core and surface contributions to optical and electronic transitions. Here, three blue luminescent carbon dots with carboxyl, amino and hydroxyl groups were comprehensively characterized by UV-vis absorption and emission spectroscopy, synchrotron-based X-ray spectroscopy, and infrared spectroscopy. The influence of the surface functionality on their fluorescence was probed by pH-dependent photoluminescence measurements. Moreover, the hydrogen bonding interactions between water and the surface groups of carbon dots were characterized by infrared spectroscopy. Our results show that both core and surface electronic states of blue luminescent carbon dots contribute to electronic acceptor levels while the chemical nature of the surface groups determines the hydrogen bonding behavior of the carbon dots. This comprehensive spectroscopic study demonstrates that the surface chemistry has a profound influence on the electronic configuration and surface–water interaction of carbon dots, thus affecting their photoluminescence properties. KW - Quantum dots KW - Spectroscopy KW - UV Vis KW - Fluorescence KW - Surface chemistry PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472325 DO - https://doi.org/10.1039/c8nr08595a SN - 2040-3372 VL - 11 IS - 4 SP - 2056 EP - 2064 PB - RSC AN - OPUS4-47232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Mousavi, M. ED - Thomasson, B. ED - Li, M. ED - Kraft, Marco ED - Würth, Christian ED - Andersson-Engels, S. T1 - Beam-profile-compensated quantum yield measurements of upconverting nanoparticles N2 - The quantum yield is a critically important parameter in the development of lanthanide-based upconverting nanoparticles (UCNPs) for use as novel contrast agents in biological imaging and optical reporters in assays. The present work focuses on the influence of the beam Profile in measuring the quantum yield (f) of nonscattering dispersions of nonlinear upconverting probes, by establishing a relation between f and excitation light power density from a rate equation analysis. A resulting 60% correction in the measured f due to the beam profile utilized for excitation underlines the significance of the beam profile in such measurements, and its impact when comparing results from different Setups and groups across the world. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brithtness KW - Quantification KW - Nanoparticle KW - Absolute fluoreometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method PY - 2017 DO - https://doi.org/10.1039/c7cp03785f SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 33 SP - 22016 EP - 22022 PB - Royal Society of Chemistry AN - OPUS4-42583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Otto, S. ED - Scholz, Norman ED - Behnke, Thomas ED - Heinze, K. T1 - Thermo-Chromium: A Contactless Optical Molecular Thermometer N2 - The unparalleled excited-state potential-energy landscape of the chromium(III)-based dye [1]3+ ([Cr(ddpd)2]3+; ddpd=N,N’-dimethyl-N,N’-dipyridin-2-ylpyridin-2,6-diamine) enables a strong dual emission in the near infrared region. The temperature dependence of this dual emission allows the use of [1]3+ as an unprecedented molecular ratiometric thermometer in the 210–373 K temperature range in organic and in aqueous media. Incorporation of [1]3+ in biocompatible nanocarriers, such as 100 nm-sized polystyrene nanoparticles and solutol micelles, provides nanodimensional thermometers operating under physiological conditions. KW - Temperature KW - Sensor KW - Dual emission KW - Fluorescence KW - Cr complex KW - Nano KW - Particle KW - Micelle KW - Probe KW - Environment PY - 2017 DO - https://doi.org/10.1002/chem.201701726 SN - 0947-6539 VL - 23 IS - 50 SP - 12131 EP - 12135 PB - Wiley-VCH AN - OPUS4-42539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Tschiche, Harald Rune A1 - Moldenhauer, Daniel A1 - Resch-Genger, Ute T1 - Broad range ON/OFF pH sensors based on pKa tunable fluorescent BODIPYs N2 - A set of highly fluorescent, pH-responsive boron dipyrromethene dyes covering the pH range of 5-12 is presented for broad range pH measurements in mixed aqueous-organic median and polymer matrices. Readout in the intensity Domain with low cost and miniaturized Instrumentation utilizes reversible protonation induced switching ON of their initially completely quenched flourescence mediated by photoinduced electron Transfer. All dyes, rationally designed to reveal closely matching Absorption and Emission properties, are accessible via facile two-step reactions in Overall yields of up to 20%. By modifying the Substitution pattern of the meso-Aryl substiuent, the pKa values could be fine-tuned from 6 to 11. Integration of these molecules into polymeric films by a simple mixing procedure yielded reversible and longterm stable pH sensors for naked eye detection. KW - Fluorescence KW - Sensor KW - PH KW - Dye KW - BODIPY KW - Synthesis KW - Quantification KW - Film KW - Quantum yield KW - Lifetime KW - PET PY - 2017 DO - https://doi.org/10.1016/j.snb.2017.05.080 SN - 0925-4005 VL - 251 SP - 490 EP - 494 PB - Elsevier AN - OPUS4-41782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Standardization of fluorescence measurements in the UV/vis/NIR/IR N2 - Photoluminescence techniques are amongst the most widely used Tools in the life sciences, with new and exciting applications in medical diagnostics and molecular Imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for Multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from Instrument-dependent effects, which are also time-dependent due to aging of Instrument-components, and difficulties to measure absolute flourescence entensities. Moreover, scattering Systems require Special measurement geometries and the interest in new optical Reporters with Emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material Performance and the rational designg of new flourophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid flourescence Standards for different flourescence paramters including traceable Instrument calibration procedures and the design of integrating spere setups for the absolute measurements of emission spectra and Quantum yields in the wavelength Region of 350 to 1600 nm. Examples are multi-Emitter glasses, spectral flourescence Standards, and quantum yield Standards for the UV/vis/NIR. T2 - Conference on Molecular-Guided Surgery - Molecules, Devices, and Applications III CY - San Francisco, CA, USA DA - 28.01.2017 KW - Fluorescence KW - Reference material KW - Standard KW - Calibration KW - Nanoparticle KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Quantum yield standard KW - Emission standards PY - 2017 SN - 978-1-5106-0539-8 DO - https://doi.org/10.1117/12.2255728 SN - 0277-786X VL - 10049 SP - 1 PB - Proceedings of SPIE AN - OPUS4-41783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Choi, Youungeun A1 - Kotthoff, Lisa A1 - Olejko, L. A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - DNA origami-based Förster resonance energy-transfer nanoarrays and their application as ratiometric sensors N2 - DNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye–dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Förster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pH-responsive acceptor. Our results indicate that the sensitivity of a ratiometric sensor can be improved simply by arranging the dyes into a well-defined array. The dyes used here can be easily replaced by other analyte-responsive dyes, demonstrating the huge potential of DNA nanotechnology for light harvesting, signal enhancement, and sensing schemes in life sciences. KW - DNA origami KW - FRET KW - Sensing KW - Ratiometric sensing KW - Fluorescence PY - 2018 DO - https://doi.org/10.1021/acsami.8b03585 SN - 1944-8244 SN - 1944-8252 VL - 10 IS - 27 SP - 23295 EP - 23302 PB - ACS AN - OPUS4-46002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kraft, Marco A1 - Kaiser, Martin A1 - Grauel, Bettina A1 - Krukewitt, Lisa A1 - Frenzel, Florian A1 - Hirsch, T. A1 - Homann, C. A1 - Haase, M. A1 - Fischer, S. T1 - Quantification of Parameters Affecting the Upconversion Luminescence of Lanthanide-Based Upconversion Nanocrystals N2 - Lanthanide-based upconversion nanoparticles (UCNPs) like hexagonal Beta-NaYF4 UCNPs doped with Yb3+ and Er3+, which efficiently convert 976 nm light to ultraviolet, visible, and near infrared photons, offer new strategies for luminescence-based sensing, barcoding, and imaging. The properties of their upconversion (UC) luminescence (UCL) are, however, strongly influenced by particle size, the concentration and spatial arrangement of the dopant ions, surface chemistry including presence and thickness of surface passivation and shielding shells, microenvironment/presence of quenchers with high energy vibrations, and excitation power density (P). We present here a comprehensive study of the influence of UCNP size and particle architecture for Yb3+ and Er3+ co-doped NaYF4 core-only and core-shell nanostructures in the size range of about 5 nm to 50 nm, which underlines the importance of particle synthesis, surface chemistry, and quantitative luminescence measurements for mechanistic insights and the determination of application-relevant matrix- and P-dependent optimum dopand concentrations. T2 - Materials Challenges in Alternative and Renewable Energy (MCARE) 2018 CY - Vancouver, BC, Canada DA - 20.08.2018 KW - Upconverting nanoparticles KW - Size KW - Energy transfer KW - Fluorescence KW - Absolute fluorescence quantum yield KW - Fluorescence decay kinetics KW - Power density dependence PY - 2018 AN - OPUS4-46393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Michael A1 - Moser, Marko A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative Characterization of Functional Nanomaterials with vis/NIR Emission N2 - The rational design of functional nanomaterials for optical applications in the material and life sciences requires optical-spectroscopic methods for the quantitative characterization of their signal-relevant optical properties. Additionally, methods for the simple and quantitative analysis of the surface chemistry are desired as the chemical nature and number of the surface groups and ligands can affect the optical features and controls the interaction of these nanomaterials with their environment. Here, we present quantitative photoluminescenvce studies of different types of vis/NIR-emissive nanomaterials like semiconductor quantum dots and upconversion nanocrystals will be presented and their relevance for the mechanistic understanding of nonradiative decay channels and the rational design of new nanomaterials will be underpinned. In this respect, also validation concepts for such measurements and absolute fluorometry will be introduced. In addition, the potential of optical spectroscopy for surface group and ligand analysis surface chemistry will be demonstrated exemplarily for semiconductor quantum dots T2 - AK Prof. Voss CY - Uni Brunswick, Germany DA - 03.08.2017 KW - Semiconductor KW - Upconversion KW - Nanoparticle KW - Fluorescence KW - Surface group analysis KW - NIR KW - Absolute fluoreometry KW - Integrating sphare spectroscopy KW - Optical probe KW - Assay KW - Thiol ligand PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-41366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - The European Upconversion Network: From the Design of Photon-upconverting Nanomaterials to (Biomedical) Applications (CM1403) WG1 Materials Research & Photophysical Characterization N2 - Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been in the focus of many research activities in the material and life sciences over the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. In order to fully exploit the application potential of these fascinating nanomaterials, a number of challenges has to be overcome such as the low brightness particularly of small UCNPs and the reliable quantification of the excitation power density (P)-dependent upconversion luminescence (UCL). Here, the need and requirements on the characterization of the optical properties of UCNPs are discussed with special focus on the reliabiliy and comparability of relative and quantitative luminescence measurements and prerequisites for their standardization. T2 - COST Treffen CY - Aveiro, Portugal DA - 26.06.2017 KW - Upconversion KW - Nanoparticle KW - Fluorescence KW - NIR KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - Reference maerial KW - Standardization KW - Quantum yield PY - 2017 AN - OPUS4-41367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -