TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are performed. The objective of the contribution is to investigate, under different heat treatment condition, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. T2 - Fatigue Design 2021 CY - Senlis, France DA - 17.11.2021 KW - AlSi10Mg KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2021 AN - OPUS4-53794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912), also known as “Invar”, is an alloy with 36% nickel. It was developed in 1897 by Guillaume and stands out for its very low thermal expansion coefficient. It is classified as a difficult-to-cut material and is commonly used for the production of fiber-reinforced composites in the field of mold construction. Additive manufacturing (AM) offers many economic advantages regarding the repair, modification and manufacture of entire components. Subsequent machining of the AM components is necessary to account for complex structures, final contours or defined surfaces. This is usually done using a tool with a geometrically defined cutting edge, i.e., milling processes. Surface integrity is determined by metallurgical (e.g., microstructure of the subsurface), topological (e.g., surface defects, roughness) and mechanical (e.g., residual stresses) factors, which is crucial in terms of component safety and performance. Modern, hybrid cutting processes, such as ultrasonic-assisted milling (US), provide potentially improvement of the cutting situation of these components. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr and Nb up to a maximum of 1 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Part II focusses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. The results show a significant positive influence of ultrasonic assistance on the resulting cutting force of both materials. The modification with 1% Ti shows a positive influence on the surface integrity, as the roughness of the conventional machining processes is lower compared to the initial alloy, which has to be confirmed in further experiments. T2 - IIW C-II Intermediate meeting CY - Online meeting DA - 17.03.2022 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Plasma-Transferred-Arc KW - Surface integrity KW - Alloy 36 KW - Additive manufacturing PY - 2022 AN - OPUS4-54910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Treutler, K. A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Nickel-iron-alloy modification to enhance additively welded microstructure for subsequent milling N2 - The aerospace industry uses nickel-iron-alloys to create moulding tools for composite materials because of the low coefficient of thermal expansion. These tools have a large-sized and complex structure, making them cost-intensive and difficult to manufacture. Therefore, the focus is set on additive manufacturing, which can additionally enable the repair of components in order to eliminate local defects. However, the process usually results in a heterogeneous microstructure and anisotropic mechanical properties. As there is a high demand for a precise and exact fit of the precision moulds and thus the surface quality, the welded components must be subsequently machined. Nickel-iron alloys are difficult to machine and an inhomogeneous microstructure also leads to unstable cutting forces. Consequently, a refinement and homogenisation of the microstructure morphology is achieved through specific alloy modifications in order to stabilise and improve the subsequent machining process. Studies on the refinement of FeNi 36 based on vacuum arc melting furnaces are used as a starting point. Therefore, titanium and niobium are chosen as modification elements with a maximum 1 % weight percent and are added to nickel-iron base alloy. The elements are alloyed and build-up welded by using plasma-transferred-arc welding. The resulting microstructure morphology of the welded wall structure and the machining properties are then determined. Furthermore, the influence on the coefficient of thermal expansion is investigated in connection with the modification and the welding process itself. It can be shown that even small amounts of niobium have a significant influence on the structural morphology of the welded layers during plasma-transferred-arc welding. T2 - 2nd international Conference on Advanced Joining Processes 2021 CY - Sintra, Portugal DA - 21.10.2021 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Nickel-iron-alloy KW - Additive manufacturing KW - Plasma transferred arc welding PY - 2021 AN - OPUS4-53635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Alloy modification for additive manufactured Ni alloy components Part I: Effect on microstructure and hardness N2 - Alloy 36 (1.3912), also known as “Invar”, is an alloy with 36% nickel. The alloy has a remarkably low thermal expansion coefficient in certain temperature ranges. Therefore, it is used in applications in which dimensional stability is critical, such as moulding tools for composite materials in aerospace and automotive applications. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components. Additively manufactured components have a heterogeneous microstructure and anisotropic mechanical properties. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr and Hf up to a maximum of 0.33 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Part II focusses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. The results show that PTA welding cause numerous finely distributed precipitates with high silicon content. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy modification KW - Alloy 36 KW - Additive manufacturing PY - 2022 AN - OPUS4-55439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 AN - OPUS4-55429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SP - 57 EP - 67 AN - OPUS4-55430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Investigations on influencing the microstructure of additively manufactured Co-Cr alloys to improve subsequent machining conditions N2 - Co-Cr alloys are frequently used for highly stressed components, especially in turbine and plant construction, due to their high resistance to thermal and mechanical stress, as well as to corrosive and abrasive loads. Furthermore, they are classified as difficult-to-cut materials because of their high strength and toughness as well as their low thermal conductivity. However, for Co, an increased cost and supply risk can be observed in recent years. Therefore, additive manufacturing (AM) offers significant economic advantages due to higher material efficiency regarding repair, modification, and manufacturing of such components. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. In addition, subsequent machining, particularly contour milling, is essential to generate the required complex contours and surfaces. Hence, additive and machining manufacturing processes need to be coordinated in a complementary way, especially due to additional challenges arising in milling of heterogeneous hard-to-cut microstructures. Recently, it has been shown that modern, hybrid cutting processes, such as ultrasonic-assisted milling (US), can improve the cutting situation. In this investigation, the Co-Cr initial alloy is additionally modified with Ti and Zr up to 1 wt.-% with the aim to enhance the homogeneity of the microstructure and, thus, the machinability. Hence the investigation includes finish milling tests of the AM components and the comparison of US and conventional machining. Both the modifications and the ultrasonic assistance exhibit a significant effect on the machining situation, e.g., US causes a higher surface integrity of the finish milled surfaces compared to conventional milling. T2 - International Congress on Welding, Additive Manufacturing and associated non destructive testing CY - Online meeting DA - 08.06.2022 KW - Co-Cr-alloy KW - Additive manufacturing KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 AN - OPUS4-55431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912), also known as “Invar”, is an alloy with 36% nickel. It was developed in 1897 by Guillaume and stands out for its very low thermal expansion coefficient. It is classified as a difficult-to-cut material and is commonly used for the production of fiber-reinforced composites in the field of mold construction. Additive manufacturing (AM) offers many economic advantages regarding the repair, modification and manufacture of entire components. Subsequent machining of the AM components is necessary to account for complex structures, final contours or defined surfaces. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr and Hf up to a maximum of 0.33 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Part II focusses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. Machining tests were carried out, to investigate the influence of ultrasonic assistance and the effects of modification elements Ti, Zr and Hf on the occurring cutting forces, temperatures and resulting surface integrity of the AM components made of alloy 36 and their modifications. The results show a significant positive influence of ultrasonic assistance on the resulting cutting force as well as on the roughness of all materials investigated. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy modification KW - Alloy 36 KW - Additive manufacturing KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 AN - OPUS4-55432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Heat control and design‑related effects on the properties and welding stresses in WAAM components of high‑strength structural steels N2 - Commercial high-strength fller metals for wire arc additive manufacturing (WAAM) are already available. However, widespread industrial use is currently limited due to a lack of quantitative knowledge and guidelines regarding welding stresses and component safety during manufacture and operation for WAAM structures. In a joint research project, the process- and material-related as well as design infuences associated with residual stress formation and the risk of cold cracking are being investigated. For this purpose, reference specimens are welded fully automated with defned dimensions and systematic variation of heat control using a special, high-strength WAAM fller metal (yield strength>790 MPa). Heat control is varied by means of heat input (200–650 kJ/m) and interlayer temperature (100–300 °C). The ∆t8/5 cooling times correspond with the recommendations of fller metal producers (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. High heat input leads to a lower tensile stress in the component and may cause unfavorable microstructure and mechanical properties. However, a sufciently low interlayer temperature is likely to be suitable for obtaining adequate properties at a reduced tensile stress level when welding with high heat input. The component design afects heat dissipation conditions and the intensity of restraint during welding and has a signifcant infuence on the residual stress. These complex interactions are analyzed within this investigation. The aim is to provide easily applicable processing recommendations and standard specifcations for an economical, appropriate, and crack-safe WAAM of high-strength steels. KW - GMA welding KW - Additive manufacturing KW - Residual stresses KW - High-strength steel KW - Cold cracking safety KW - Heat control KW - Wind energy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567397 DO - https://doi.org/10.1007/s40194-022-01450-x SN - 1878-6669 VL - 2022 SP - 1 EP - 11 PB - Springer CY - Berlin AN - OPUS4-56739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Cabeza, Sandra T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - WAM2018 CY - Grenoble, France DA - 09.04.2018 KW - Additive manufacturing KW - SLM KW - Residual stress KW - In718 PY - 2018 AN - OPUS4-44694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts N2 - The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed. KW - Additive manufacturing KW - SLM KW - Residual stress KW - Synchrotron X-ray diffraction KW - IN718 PY - 2018 DO - https://doi.org/10.1007/s11661-018-4653-9 SN - 1073-5623 VL - 49A IS - 7 SP - 3038 EP - 3046 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Modification of CoCr alloys to optimize of additively welded microstructures and subsequent surface finishing N2 - Due to increasing requirements relating to the efficiency of highly stressed components in turbine or plant construction, the use of cost-intensive, difficult to process materials is increasingly necessary today. In this context, cobalt-chromium alloys in particular are highly resistant to thermal and mechanical stress, as well as to corrosive and abrasive loads. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components in many sectors. In order to realise a homogeneous and isotropic microstructure, alloy modifications are made to the alloy CoCr26Ni9Mo5W. For this purpose, hafnium and zirconium are added at 1 % and 0,33 % by mass each, as these elements are supposed to have a positive effect on the microstructure morphology. Plasma-Transferred-Arc is used for the welding tests. Wall structures are welded by multiple single-layer, overlapping welding beads on low-alloyed steel substrate (S355). The results show that the alloying elements hafnium and zirconium have a clear influence on the microstructure. Hardness measurements were also carried out. With each modification, the hardness is increased compared to the original material. The machining analyses show a reduction in cutting forces using ultrasonic assisted milling for high cutting speed and low feed rate. T2 - 2021 Intermediate meeting of C IX NF CY - Online meeting DA - 09.03.2021 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Plasma-Transferred-Arc KW - Filler metal modification KW - Additive manufacturing PY - 2021 AN - OPUS4-52356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Kromm, Arne A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Götheburg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Ressidual stress KW - Neutron diffraction PY - 2018 AN - OPUS4-45761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - VAMAS - Workshop CY - BAM, Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Neutron diffraction KW - Ressidual stress PY - 2018 AN - OPUS4-45762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfretzschner, Beate T1 - Characterization of texture in SLM IN 718 samples using monochromatic neutron radiography N2 - Additive Manufacturing (AM) offers the opportunity to produce easier geometrically complex parts compared to traditional production technologies. An important AM technology for metals is selective laser melting (SLM) where a part is produced by melting and solidifying powder in layers. This technique is known to cause a pronounced texture in the produced AM products due to the specific heat flow and the associated solidification of the material during SLM deposition. In order to evaluate the influence of the deposition hatch length during SLM of nickel based superalloy Inconel 718 samples on the texture and in order to identify any preferred crystallographic direction, we performed monochromatic neutron radiography scans (using wavelength from 1.6 Å to 4.4 Å, step size 0.05 Å) to image the samples while rotating it through 90°. Samples produced with short hatch length showed fine textured columnar grains oriented along the sample building direction in high-resolution radiographs. Whereas processing the sample using a ten-fold longer hatch length reduced the texture. The neutron radiographic experiments were accompanied by scanning electron microscopy including electron back-scattered diffraction to visualize and verify the microstructure and texture. T2 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities CY - Garching, Germany DA - 17.09.2018 KW - Bragg-edge KW - Neutron KW - Texture KW - Additive manufacturing PY - 2018 AN - OPUS4-47260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, N. A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - Residual stress in selective laser melted Inconel 718: Influence of the removal from base plate and deposition hatch length N2 - The residual stress distribution in IN718 elongated prisms produced by Selective Laser Melting was studied by means of neutron (bulk) and laboratory X-ray (surface) diffraction. Two deposition hatch lengths were considered. A horizontal plane near the top surface (perpendicular to the building direction) and a vertical plane near the lateral surface (parallel to the building direction) were investigated. Samples both in as-built (AB) condition and removed (RE) from the base plate were characterized. While surface stress fields seem constant for AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e. with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the baseplate. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Selective laser melting KW - Laboratory X-ray diffraction KW - Coordinate measurement machine KW - IN718 PY - 2018 DO - https://doi.org/10.1520/MPC20170119 SN - 2379-1365 VL - 7 IS - 4 SP - 717 EP - 735 PB - ASTM International CY - USA, West Conshohocken AN - OPUS4-46673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Werner, Tiago A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post-laser powder bed fusion stress-relieve treatments of stainless steel 316L N2 - This study reports on the stress relaxation potential of stress-relieving heat treatments for laser powder bed fused 316L. The residual stress is monitored non-destructively using neutron diffraction before and after the heat treatment. Moreover, the evolution of the microstructure is analysed using scanning electron microscopy. The results show, that a strong relaxation of the residual stress is obtained when applying a heat treatment temperature at 900°C. However, the loss of the cellular substructure needs to be considered when applying this heat treatment strategy. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Projekt AGIL - Alterung additiv gefertigter metallischer Materialien und Komponenten PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536045 DO - https://doi.org/10.1007/s11661-021-06472-6 SN - 1543-1940 VL - 52 IS - 12 SP - 5342 EP - 5356 PB - Springer CY - Boston AN - OPUS4-53604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Saliwan Neumann, Romeo A1 - Farahbod, Lena A1 - Haberland, Christoph A1 - Portella, Pedro Dolabella T1 - Influence of support configurations on the characteristics of selective laser-melted Inconel 718 N2 - Samples fabricated using two different support configurations by following identical scan strategies during selective laser melting of superalloy Inconel 718 were characterized in this study. Characterization methods included optical microscopy, electron back-scattered diffraction and x-ray diffraction residual stress measurement. For the scan strategy considered, microstructure and residual stress development in the samples were influenced by the support structures. However, crystallographic texture intensity and the texture components formed within the core part of the samples were almost independent of the support. The formation of finer grains closer to the support as well as within the columnar grain boundaries resulted in randomization and texture intensity reduction by nearly half for the sample built on a lattice support. Heat transfer rates dictated by the support configurations in addition to the scan strategy influenced the microstructure and residual stress development in selective laser-melted Inconel 718 samples. KW - Additive manufacturing KW - Selective laser melting KW - Support configurations KW - Microstructure and texture KW - Residual stress PY - 2018 DO - https://doi.org/10.1007/s11837-017-2703-1 SN - 1047-4838 SN - 1543-1851 VL - 70 IS - 3 SP - 343 EP - 348 PB - Springer CY - USA AN - OPUS4-44175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Haberland, C. A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing N2 - Laser based powder bed fusion additive manufacturing offers the flexibility to incorporate standard and userdefined scan strategies in a layer or in between the layers for the customized fabrication of metallic components. In the present study, four different scan strategies and their impact on the development of microstructure, texture, and residual stresses in laser powder bed fusion additive manufacturing of a nickel-based superalloy Inconel 718 was investigated. Light microscopy, scanning electron microscopy combined with electron backscatter diffraction, and neutron diffraction were used as the characterization tools. Strong textures with epitaxially grown columnar grains were observed along the build direction for the two individual scan strategies. Patterns depicting the respective scan strategies were visible in the build plane, which dictated the microstructure development in the other planes. An alternating strategy combining the individual strategies in the successive layers and a 67◦ rotational strategy weakened the texture by forming finer microstructural features. Von Mises equivalent stress plots revealed lower stress values and gradients, which translates as lower distortions for the alternating and rotational strategies. Overall results confirmed the scope for manipulating the microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing by effectively controlling the scan strategies. KW - Additive manufacturing KW - Laser powder bed fusion KW - Nickel-based superalloys KW - Scan strategies KW - Residual stresses KW - Microstructure and texture PY - 2021 DO - https://doi.org/10.1016/j.addma.2020.101792 VL - 38 SP - 1792 PB - Elsevier B.V. AN - OPUS4-51944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Haubrich, J. A1 - Requena, G. A1 - Madia, Mauro T1 - Influence of post-process heat treatments on the fatigue crack propagation behaviour of a PBF-LB/M AlSi10Mg alloy N2 - The microstructure has a great influence on short fatigue crack growth in metallic materials. Laser-based Powder Bed Fusion AlSi10Mg alloys exhibit in the as-built condition a fine fibrous Si structure and a supersaturated solid solution of Si in the α-Al matrix, which is significantly modified by heat treatments starting already at temperatures under 260 °C. This study focuses on the influence of post-process heat treatments on the microstructural evolution and the resulting fatigue crack growth resistance. As compared to the as-built condition, two heat treatments at 265 °C/1 h and at 300 °C/2 h are found to be beneficial to the fatigue crack growth resistance of the investigated material. KW - Additive manufacturing KW - Fatigue crack growth KW - Cyclic R-curve KW - Heat treatment PY - 2023 DO - https://doi.org/10.1016/j.ijfatigue.2023.107808 SN - 0142-1123 VL - 175 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-57822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -