TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Kromm, Arne A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Götheburg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Ressidual stress KW - Neutron diffraction PY - 2018 AN - OPUS4-45761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - VAMAS - Workshop CY - BAM, Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Neutron diffraction KW - Ressidual stress PY - 2018 AN - OPUS4-45762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Lellinger, D. A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Crack propagation in PE-HD induced by environmental stress cracking (ESC) analyzed by several imaging techniques N2 - Different imaging techniques were employed to monitor Full Notch Creep Test (FNCT) experiments addressing environmental stress cracking in more detail. The FNCT is a well-established test method to assess slow crack growth and environmental stress cracking of polymer materials, especially polyethylene. The standard test procedure, as specified in ISO 16770, provides a simple comparative measure of the resistance to crack growth of a certain material based on the overall time to failure when loaded with a well-defined mechanical stress and immersed in a liquid medium promoting crack propagation. Destructive techniques which require a direct view on the free fracture surface, such as light microscopy and laser scanning microscopy, are compared to non-destructive techniques, i.e. scanning acoustic microscopy and xray micro computed tomography. All methods allow the determination of an effective crack length. Based on a series of FNCT specimens progressively damaged for varied Durations under standard test conditions, the estimation of crack propagation rates is also enabled. Despite systematic deviations related to the respective Imaging techniques, this nevertheless provides a valuable tool for the detailed evaluation of the FNCT and its further development. KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Full notch creep test (FNCT) KW - X-ray computed tomography (CT) KW - Laser scanning microscopy (LSM) KW - Scanning acoustic microscopy (SAM) PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.08.014 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 544 EP - 555 PB - Elsevier AN - OPUS4-45766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Nolze, Gert A1 - Schriever, Sina A1 - Feldmann, Titus A1 - Farzik Ijaz, M. A1 - Viguier, B. A1 - Poquillon, D. A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. T1 - Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature N2 - The creep behavior of single crystals of the nickel-based superalloy CMSX-4 was investigated at 1288 °C, which is the temperature of the hot isostatic pressing treatment applied to this superalloy in the industry. It was found that at this super-solvus temperature, where no gammaPrime-strengthening occurs, the superalloy is very soft and rapidly deforms under stresses between 4 and 16 MPa. The creep resistance was found to be very anisotropic, e.g., the creep rate of [001] crystals was about 11 times higher than that of a [111] crystal. The specimens of different orientations also showed a very different necking behavior. The reduction of the cross-sectional area psi of [001] crystals reached nearly 100 pct, while for a [111] crystal psi = 62 pct. The EBSD analysis of deformed specimens showed that despite such a large local strain the [001] crystals did not recrystallize, while a less deformed [111] crystal totally recrystallized within the necking zone. The recrystallization degree was found to be correlated with deformation behavior as well as with dwell time at high temperature. From the analysis of the obtained results (creep anisotropy, stress dependence of the creep rate, traces of shear deformation, and TEM observations), it was concluded that the main strain contribution resulted from <01-1>{111} octahedral slip. T2 - 3rd European Conference on Superalloys (‘Eurosuperalloys 2018’) CY - Oxford, UK DA - 9.9.2018 KW - Single-crystal KW - Superalloy KW - Creep KW - Isostatic hot pressing (HIP) PY - 2018 DO - https://doi.org/10.1007/s11661-018-4729-6 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3973 EP - 3987 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45660 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. A1 - Balzer, R. A1 - Kiefer, P. T1 - The influence of water as volatile on crack propagation in soda-lime silicate glass N2 - The talk was given at the Spring School of the SPP1594 in Hannover and summarizes the actual findings about crack growth in water bearing soda-lime silicate glass and a comparison to other oxide glasses. T2 - Spring School des SPP1594 CY - Hannover, Germany DA - 06.03.2018 KW - DCB KW - Soda-lime silicate glass KW - Crack growth KW - Vickers KW - Water speciation PY - 2018 AN - OPUS4-45699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Kiefer, P. A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Deubener, J. A1 - Behrens, H. T1 - Wasser und Risswachstum in Silicatgläsern N2 - Die Festigkeit von Gläsern wird durch die Oberflächenqualität beeinflusst. Kommt es neben dem Auftreten von Defekten zusätzlich zum Risswachstum ausgehend hiervon, wird die Festigkeit minimiert. Das Wachstum hängt dabei maßgeblich von der Luftfeuchtigkeit ab. Dieses Ermüdungsverhalten von Gläsern besser zu verstehen und dabei die Mechanismen und den Einfluss von im Volumen eingebauten Wasser auf das unterkritische Risswachstum zu untersuchen, ist Ziel der Arbeiten. Als Teilprojekt im Rahmen des DFG Schwerpunktprogramms SPP 1594 „Ultrastrong glasses“ soll der Einfluss des im Volumen eingebauten Wassers auf die Rissspitze untersucht werden. Zusammen mit der Leibniz Universität Hannover und der TU Clausthal werden hierfür hochwasserhaltige Gläser (bis zu 8 Gew%) bei 8 kbar über die Flüssigphase synthetisiert, die makroskopisch den hohen Wasseranteil nachstellen. Die Charakterisierung erfolgt hinsichtlich des Wassereinbaus, der mechanischen Eigenschaften und des Risswachstums. Die Arbeiten in Berlin beziehen sich hierbei auf die Messungen des unterkritischen Risswachstums in Luft und Vakuum, sowie Verlustwinkelmessungen. Erste Ergebnisse zeigen Unterschiede im korrosionsbeeinflussten (langsames) und inerten (schnelles und im Vakuum stattfindendes) Risswachstumsverhalten der untersuchten Gläsern. Die Rissgeschwindigkeit beim Übergang vom korrosionsbeeinflussten zum inerten Risswachstum ist hin¬gegen für alle Gläser ähnlich und folglich ein kinetisch durch den äußeren Wassertransport an die Rissspitze bestimmter Prozess. Der Widerstand gegen Risswachstum steigt mit Tg und zusätzlich kann anhand der Verlustwinkelmessungen ein Zusammenhang zwischen der Netzwerk- und der β-Relaxation ermittelt werden. Je höher der Wassergehalt im Glas ist, desto niedriger wird Tg und einfacher das Risswachstum, welches sich durch längere Risse kennzeichnet. Besonders stark tritt dieser Effekt bei einem Überschuss an molekularem Wasser auf. T2 - 1. Fachsymposium der Glasapparatebauer CY - Munich, Germany DA - 19.04.2018 KW - Wasser KW - Risswachstum KW - Glas KW - Vickers KW - DCB PY - 2018 AN - OPUS4-45701 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-critical crack growth in silicate glass N2 - Premature failure of glass under load is caused by sub-critical crack growth (SCCG) originate from microscopic flaws at the surface. While SCCG is related to the humidity of the ambient atmosphere, leading to stress corrosion phenomena at the crack tip, the detailed mechanism and the effect of different network formers are still not fully understood. For more clarity, various soda silicate glasses with a second network former were investigated by double cantilever beam technique: Na2O*Al2O3*SiO2 (NAS), Na2O*B2O3*SiO2 (NBS), Na2O*PbO*SiO2 (NPbS). Three effects on the crack growth velocity, v, versus stress intensity, KI, curves were found out. The slope in region I, which is limited by corrosion, increases in the order NAS < NBS ≲ NPbS. The velocity range of region II reflecting the transition between corrosion effected and inert crack growth (region III), varies within one order of magnitude between the glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam1/2. For comparison, crack growth at different humidity in commercial soda lime silicate glass (NCS) was measured. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Risswachstum KW - DCB KW - Glas PY - 2018 AN - OPUS4-45702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Statistical analysis of Vickers induced subcritical crack growth in soda-lime silicate glasses N2 - Studies on Vickers induced subcritical crack growth are controversially discussed since the stresses that drive the crack growth are distributed three dimensionally within the material and cannot be retraced by available methods. Hence, empirical approaches are used to calculate mechanical material parameters such as the stress intensity factor KI. However, the results of these approaches show large deviations from those measured by standardized techniques such as double cantilever beam (DCB) or double cleavage drilled compression (DCDC). Yet, small specimen sizes and low specimen quantities can prevent the execution of DCB and DCDC measurements. Here we present an approach that is based on a statistical analysis of Vickers induced radial cracks. For this purpose more than 150 single radial cracks were analyzed. The cracks were generated in a commercial soda-lime silicate glass. The experiments were performed in a glovebox purged with dry nitrogen gas to minimize the influence of atmospheric water on crack growth. The temporally resolved evolution of the radial cracks was monitored in-situ using an inverted microscope equipped with a camera system directly below the Vickers indenter. An automated image analysis software was used to determine the crack length over time. The data show that the crack propagation and thereby the crack velocities are not uniformly but statistically distributed. These findings allow, using the statistical mean value of the distributions in combination with DCB data, a precise formulation of KI for each measured crack length. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Crack growth KW - Soda-lime silicate glass KW - Vickers PY - 2018 AN - OPUS4-45703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Subcritical crack growth in water bearing soda-lime silicate glasses N2 - The presence of water in the surrounding atmosphere of a propagating crack has a major influence on the subcritical crack growth. While these external phenomena are well understood, there is still a lack of knowledge on the influence of structurally bound water on crack propagation. Thus, our recent study aims on the analysis of crack propagation in water bearing soda-lime silicate glasses with up to 8 wt.% water. The samples were synthesized in an internally heated pressure vessel at 0.5 GPa. Since this preparation route limits the sample sizes, standard test geometries allowing for the determination of stress intensity factors, such as double cantilever beam, are not feasible. Thus, radial cracks in the hydrous glasses were initiated by Vickers indentation and crack growth was simultaneously captured with a camera system. An automated image analysis algorithm was used for the analysis of the crack length of each single video frame. To minimize influences by atmospheric water, all experiments were conducted in a glovebox purged with dry N2. About 150 cracks per glass composition were analyzed to provide statistical significance of the Vickers-induced SCCG. The results show that structurally bound water has a major influence on SCCG by means of crack lengths, growth rates and time of crack initiation. T2 - 92nd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meetings of the Czech Glass Society & the Slovak Glass Society CY - Bayreuth, Germany DA - 28.05.2018 KW - Water speciation KW - Soda-lime silicate glass KW - Crack growth KW - Vickers PY - 2018 AN - OPUS4-45704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Balzer, R. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Statistical analysis of subcritical crack growth in water bearing soda-lime silicate glasses N2 - The talk was given at the PNCS-ESG 2018 in Saint Malo and summarizes the actual findings about Vickers induced crack growth in water bearing soda-lime silicate glasses. T2 - 15th International Conference on the Physics of Non-Crystalline Solids & 14th European Society of Glass Conference CY - Saint Malo, France DA - 09.07.2018 KW - Water speciation KW - Vickers KW - Crack growth KW - Soda-lime silicate glass PY - 2018 AN - OPUS4-45707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Gaber, M. T1 - VACUUM HOT EXTRACTION (VHE-MS): Concentration, diffusion and degassing of volatiles N2 - Der Vortrag gibt eine Einführung in die Methode der Vakuumheißextraktion und beschreibt die Anwendungsmöglichkeiten der an der BAMN betriebenen Anlage. T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - TU Berlin, Germany DA - 26.1.2018 KW - Gasabgabe KW - Diffusion KW - Gasgehalt PY - 2018 AN - OPUS4-45665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sharatchandra Singh, W. A1 - Stegemann, Robert A1 - Kreutzbruck, Marc A1 - Mukhopadhyay, C. K. A1 - Purnachandra Rao, B. T1 - Mapping of Deformation-Induced Magnetic Fields in Carbon Steels Using a GMR Sensor Based Metal Magnetic Memory Technique N2 - Giant magneto-resistive (GMR) sensor based metal magnetic memory (MMM) technique is proposed for mapping of deformation-induced self-magnetic leakage fields (SMLFs) in carbon steel. The specimens were subjected to different amounts of tensile deformation and the deformation-induced SMLFs were measured using a GMR sensor after unloading the specimens. 3D-nonlinear finite element modeling was performed to predict stress–strain state in a steel specimen under tensile load. The experimentally obtained SMLF images were correlated with the finite element model predicted stress–strain states. Studies reveal that the MMM technique can detect the plastic deformation with signal-to-noise ratio better than 20 dB. The technique enables the mapping of plastic deformation in carbon steels for the evaluation of the severity of deformation. The study also reveals that deformation-induced SMLF is influenced by the presence of initial surface residual stress, introduced by shot peening. The intensity of SMLF signal is found to increase with increase in tensile load and decrease with shot peening. KW - GMR KW - Metal Magnetic Memory KW - 3D-finite element modeling KW - Plastic deformation KW - Carbon steel PY - 2018 DO - https://doi.org/10.1007/s10921-018-0470-8 SN - 0195-9298 VL - 37 IS - 2 SP - 21 PB - Springer US AN - OPUS4-45667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Gaber, M. A1 - Reinsch, Stefan T1 - Thermal Analysis and Relaxation Phenomena in Oxide Glasses N2 - Wasser beeinflusst empfindlich eine Vielzahl von thermisch aktivierten Relaxationsphänomenen in Gläsern wie die Spannungsrelaxation, das unterkritische Risswachstum, innere Reibung, Viskosität, Sinterverhalten und Kristallisation. Thermische Methoden können dabei wesentliche Beiträge zum Verständnis dieser Phänomene liefern. Der Vortrag gibt einen Überblick über die Möglichkeiten der VakuumHeißExtraktion (VHE) zur Untersuchung des Wassergehalts, des Wasserabgabeverhaltens und der Wassermobilität sowie über den Einfluss des Wassers auf die innere Reibung (DMA). N2 - Dissolved water decisively influences numerous thermally activated relaxation phenomena in glasses like stress relaxation, sub-critical crack growth, internal friction, viscosity, sintering, and crystallization. Thermoanalytical methods can essentially help for better understanding of these phenomena. The lecture introduces the Vacuum Hot Extraction method (VHE) and illustrates its possibilities for measuring water content, degassing and mobility. As another thermoanalytical method, the Dynamic Mechanical Themoanalysis (DMA), allowing to study the effect of dissolved water on the internal friction in glasses, is introduced. T2 - Spring school DFG SPP 1594 CY - Hannover, Germany DA - 06.03.2018 KW - Wasser KW - Silicatglas KW - Relaxationsphänomene KW - Relaxation KW - Thermoanalytical Methods KW - Glass KW - Dissolved water PY - 2018 AN - OPUS4-45668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Deubener, J. A1 - Behrens, H. T1 - Wasser in Silicatglas N2 - Der Vortrag gibt einen Überblick über den Stand des Wissens zum strukturellen Einbau von Wasser in Silicat- und Boratgläsern, den Einfluss des gelösten Wassers auf deren Viskosität sowie zu den strukturellen Vorstellungen zum Wassertransport. T2 - 1. Fachsymposium der Glasapparatebauer CY - Munich, Germany DA - 19.04.2018 KW - Wasser KW - Glass KW - Struktur PY - 2018 AN - OPUS4-45669 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glass Sintering with Concurrent Crystallization and Foaming N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials a key component for advanced technologies. Processing of glass or composite powders often allow even more flexibility in materials design. At the same time, however, processing can have substantial effects on the glass powder surface and sinterability. Thus, mechanical damage and surface contamination can strongly enhance surface crystallization, which may retard or even fully prevent densification. Whereas sintering and concurrent crystallization have been widely studied, partially as cooperative effort of the TC7 of the ICG, and although glass powder sintering is predominantly applied for glasses of low crystallization tendency, sintering is also limited by gas bubble formation or foaming. The latter phenomenon is much less understood and can occur even for slow crystallizing glass powders. The lecture illustrates possible consequences of glass powder processing on glass sintering, crystallization and foaming. T2 - 7th Int Congress on Ceramics, Symposium Frontiers of Glass Science CY - Iguacu, Brazil DA - 17.06.2018 KW - Glass KW - Powder KW - Sintering KW - Foaming PY - 2018 AN - OPUS4-45670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - Diese Arbeit beschreibt eine Methode für die Ermittlung einer Fließfunktion für additiv gefertigte Bauteile des Werkstoffs S316L. Ein Kristallplastizitätsmodell wird zunächst mit experimentellen Daten kalibriert. Anschließend werden mit diesem Modell sogenannte virtuelle Experimente durchgeführt, die die prozeßspezifische Mikrostruktur in Form von kristallographischen und morphologischen Texturen miteinbeziehen. Diese Simulationen werden mit einem representativen Volumenelement (RVE) durchgeführt, das aus EBSD/CT-Scans an additiv gefertigten Proben generiert wurde und daher die Kornstruktur und Kristallorientierungen enthält. Die virtuellen Experimente werden durchgeführt, um anhand der damit erhaltenen Fließpunkte eine anisotrope Barlat-Fließfunktion zu bestimmen. Dieser skalenübergreifende Ansatz ermöglicht die Simulation großer Strukturen, für die die Anwendung eines Kristallplastizitätsmodells numerisch zu teuer wäre. N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Additive manufacturing KW - Scale-bridging KW - Crystal plasticity KW - Virtual experiments KW - Anisotropy PY - 2018 SN - 2509-8772 SP - 153 EP - 158 PB - DVM CY - Berlin AN - OPUS4-46570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karl, D. A1 - Kamutzki, F. A1 - Zocca, Andrea A1 - Görke, O. A1 - Günster, Jens A1 - Gurlo, A. T1 - Towards the colonization of Mars by in-situ resource utilization: Slip cast ceramics from Martian soil simulant N2 - Here we demonstrate that by applying exclusively Martian resources a processing route involving suspensions of mineral particles called slurries or slips can be established for manufacturing ceramics on Mars. We developed water-based slurries without the use of additives that had a 51 wt. % solid load resembling commercial porcelain slurries in respect to the particle size distribution and rheological properties. These slurries were used to slip cast discs, rings and vases that were sintered at temperatures between 1000 and 1130 °C using different sintering schedules, the latter were set-up according the results of hot-stage microscopic characterization. The microstructure, porosity and the mechanical properties were characterized by SEM, X-ray Computer tomography and Weibull analysis. Our wet processing of minerals yields ceramics with complex shapes that show similar mechanical properties to porcelain and could serve as a technology for future Mars colonization. The best quality parts with completely vitrificated matrix supporting a few idiomorphic crystals are obtained at 1130 °C with 10 h dwell time with volume and linear shrinkage as much as ~62% and ~17% and a characteristic compressive strength of 51 MPa. KW - Ceramic KW - Mars PY - 2018 DO - https://doi.org/10.1371/journal.pone.0204025 SN - 1932-6203 VL - 13 IS - 10 SP - e0204025, 1 EP - 7 PB - Public Library of Science CY - San Francisco, Kalifornien, Vereinigte Staaten AN - OPUS4-46612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czediwoda, Fabian A1 - Fedelich, Bernard A1 - Stöhr, B. A1 - Göhler, T. A1 - Völkl, R. A1 - Nolze, Gert A1 - Glatzel, U. T1 - A numerical approach to model high-temperature creep behaviour of Ni-base superalloys from microstructural morphology to grain size scales N2 - A constitutive model for the mechanical behaviour of single crystal Ni-base superalloys under high temperature conditions has been developed in the framework of a Cooretec project in cooperation with Siemens AG, MTU Aero Engines AG and University Bayreuth. In addition to the conventional material properties e.g. elastic constants, the model requires the parameters of the initial microstructure as an input. Thus, the γ’-precipitate size and the channel width of the γ-matrix were obtained from SEM micrographs. The model uses the slip system theory and describes the movement, multiplication and annihilation of dislocations in the channels. Furthermore, the cutting of precipitates is another mechanism contributing to the plastic flow. The evolution of the morphology due to rafting and its effects on the deformation have been implemented according to. The kinematic hardening is introduced as a stress tensor to realistically represent the strain hardening of arbitrary oriented single crystals. The mechanical behaviour of single crystal specimens has been experimentally investigated in tension tests at different strain rates and in creep tests under various loads. The constitutive model has been calibrated based on the experimental data for temperatures of 950°C and 850°C and the [001] and [111] crystallographic orientations. Finally, a micromechanical model was created to simulate the creep response of additive manufactured polycrystalline structures. An EBSD image is taken to obtain the grain geometry and their respective orientation. The grain boundaries are discretised using cohesive elements, whereas the single crystal model was applied to each grain in the representative volume. The polycrystal model is generated using Dream3D, NetGen and other software previously developed at the BAM. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Nickel-base superalloy KW - Creep KW - Rafting KW - Viscoplasticity KW - EBSD KW - Grain boundaries PY - 2018 AN - OPUS4-46973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-critical crack growth in silicate glasses N2 - Environmental conditions are known to influence sub-critical crack growth (SCCG) that are released from microscopic flaws at the glass surface, leading to stress corrosion phenomena at the crack tip. The processes at the crack-tip are complex and water has been identified as a key component governing SCCG at low crack velocities (region I). In particular, the influence of humidity accelerating crack propagation is well studied for industrial soda-lime silicate glasses, which are practically free (< 1000 ppm) of dissolved water. To shed light on the corrosion process, the situation at the crack-tip is reversed in the present study as dissolved water in larger fractions is present in the glass and crack propagation is triggered in dry environment. For this purpose, water-bearing silicate glasses of up to 8 wt% total water were synthesized in an internally heated pressure vessel at 0.5 GPa and compared to dry glasses of standard glass manufacturing. SCCG was measured using the double cantilever beam technique and by Vickers indentation. For dry glasses, three trends in the crack growth velocity versus stress intensity curve were found. The slope in region I limited by environmental corrosion increases in the order sodium aluminosilicate < sodium borosilicate ≲ sodium lead silicate. The velocity range of region II reflecting the transition between corrosion affected and inert crack growth (region III), varies within one order of magnitude among the glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam1/2. For hydrous glasses, it is found that those of low Tg are more prone to SCCG. As water strongly decreases Tg, it promotes SCCG. First results indicate that molecular water has a dominating influence on SCCG. T2 - ICG Annual Meeting 2018 CY - Yokohama, Japan DA - 23.09.2018 KW - DCB KW - Glass KW - Crack growth KW - Water speciation PY - 2018 AN - OPUS4-47164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Marzok, Ulrich A1 - Müller, Ralf T1 - Glass structures with low H2-diffusity N2 - Effective hydrogen storage capacities are prerequisite for an efficient energy provision using fuel cells. Since glass has low intrinsic hydrogen permeability, it is a promising material for hydrogen storage containers as well as hydrogen diffusion barriers. Previous studies on oxidic glasses suggest a correlation between the glass composition and hydrogen permeation that was derived mainly from silica glass. In the present study, we concentrate on the relationship between thermodynamic (i.e., configurational entropy) and topologic (i.e., free volume, network polymerization) parameters. Experimental data were gathered well below the glass transition temperature, excluding significant effects caused by structural relaxation and chemical dissolution of hydrogen. The results of seven analysed glasses on the SiO2-NaAlO2 joint showed that the hydrogen permeability in fully polymerized glasses cannot solely be derived from the total free volume of the glass structure. Hence, evidence is provided that the size distribution of free volume contributes to hydrogen solubility and diffusion. Additionally, the results indicate that the configurational heat capacity ΔCp at Tg affects the hydrogen permeability of the investigated glasses. T2 - 92. Glastechnische Tagung der DGG CY - Bayreuth, Germany DA - 28.05.2018 KW - Hydrogen permeability KW - Atomic packing factor KW - Glass composition KW - Diffusion coefficient PY - 2018 AN - OPUS4-45900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -