TY - JOUR A1 - Richter, Maria A1 - Güttler, Arne A1 - Pauli, Jutta A1 - Vogel, K. A1 - Homann, Christian A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Extending certified spectral fluorescence standards for the calibration and performance validation of fluorescence instruments to the NIR—closing the gap from 750 to 940 nm with two novel NIR dyes N2 - Fluorescence techniques such as fluorescence spectroscopy, microfluorometry, and fluorescence microscopy, providing spectral, intensity, polarization, and lifetime information, are amongst the most broadly utilized analytical methods in the life and materials sciences. However, the measured fluorescence data contain sample- and instrument-specific contributions, which hamper their comparability across instruments and laboratories. Comparable, instrument-independent fluorescence data require the determination of the fluorescence instrument’s wavelength-dependent spectral responsivity, also termed emission correction curve, for the same instrument settings as those used for the fluorescence measurements as a prerequisite for the subsequent correction of the measured instrument-specific data. Such a spectral correction is essential for the performance comparison of different fluorescent labels and reporters, quantitative fluorescence measurements, the determination of the fluorescence quantum yield, and the spectroscopic measure for the fluorescence efficiency of a fluorophore. Simple-to-use tools for obtaining emission correction curves are chromophore-based reference materials (RMs), referred to as fluorescence standards, with precisely known, preferably certified instrument-independent fluorescence spectra. However, for the increasingly used near-infrared (NIR) wavelength region >700 nm, at present, no spectral fluorescence standards are available. To close this gap, we developed two novel spectral fluorescence standards, BAM F007 and BAM-F009, with broad emission bands from about 580 to 940 nm in ethanolic solution. These liquid fluorescence standards currently under certification, which will be released in 2025, will expand the wavelength range of the already available certified Calibration Kit BAM F001b-F005b from about 300–730 to 940 nm. In this research article, we will detail the criteria utilized for dye and matrix selection and the homogeneity and stability tests accompanying dye certification as well as the calculation of the wavelength-dependent uncertainty budgets of the emission spectra BAM F007 and BAM-F009, determined with the traceably calibrated BAM reference spectrofluorometer. These fluorescence standards can provide the basis for comparable fluorescence measurements in the ultraviolet, visible, and NIR for the fluorescence community. KW - Quality assurance KW - Reference material KW - Fluorescence KW - Dye KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - NIR KW - Instrument performance validation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626317 DO - https://doi.org/10.1007/s00216-024-05723-w SN - 1618-2650 SP - 1 EP - 15 PB - Springer AN - OPUS4-62631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deumer, J. A1 - Andresen, Elina A1 - Gollwitzer, C. A1 - Schürmann, R. A1 - Resch-Genger, Ute T1 - Adding More Shape to Nanoscale Reference Materials-LiYF4:Yb,Tm Bipyramids as Standards for Sizing Methods and Particle Number Concentration N2 - The increasing industrial use of nanomaterials calls for the reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry, and test and reference materials (RMs) with sizes and shapes, closely matching real-world nonspheric nano-objects. An efficient strategy to minimize efforts in producing nanoscale RMs (nanoRMs) for establishing, validating, and standardizing methods for characterizing nanomaterials are multimethod nanoRMs. Ideal candidates are lanthanide-based, multicolor luminescent, and chemically inert nanoparticles (NPs) like upconversion nanoparticles (UCNPs), which can be prepared in different sizes, shapes, and chemical composition with various surface coatings. This makes UCNPs interesting candidates as standards not only for sizing methods, but also for element-analytical methods like laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), quantitative bioimaging methods like X-ray fluorescence computed tomography (XFCT), and luminescence methods and correlative measurements. Here, we explore the potential of two monodisperse LiYF4:Yb,Tm bipyramids with peak-to-peak distances of (43 ± 2) nm and (29 ± 2) nm as size standards for small-angle X-ray scattering (SAXS) and tools for establishing and validating the sophisticated simulations required for the analysis of SAXS data derived from dispersions of nonspheric nano-objects. These SAXS studies are supplemented by two-dimensional (2D)-transmission electron microscopy measurements of the UCNP bipyramids. Additionally, the particle number concentration of cyclohexane dispersions of these UCNP bipyramids is determined by absolute SAXS measurements, complemented by gravimetry, thermogravimetric analysis (TGA), and inductively coupled plasma optical emission spectrometry (ICP-OES). This approach enables traceable particle number concentration measurements of ligand-capped nonspheric particles with unknown chemical composition. KW - Fluorescence KW - Upconversion nanoparticles KW - SAXS KW - Particle number concentration KW - Reference material KW - Traceability KW - Quality assurance KW - Quantum yield KW - Spectroscopy KW - Synthesis KW - Quantification KW - NanoRM KW - Nano KW - Particle KW - Bipyramid KW - Reference data KW - Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-617940 DO - https://doi.org/10.1021/acs.analchem.4c03641 SP - 1 EP - 8 PB - ACS Publications AN - OPUS4-61794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, J. A1 - Güttler, Arne A1 - Schneider, T. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification N2 - The rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. Main prerequisites for reliable Φf measurements, which are for transparent luminophore solutions commonly done relative to a reference, i.e., a fluorescence quantum yield standard of known Φf, are reliable and validated instrument calibration procedures to consider wavelength-, polarization-, and time-dependent instrument specific signal contributions, and sufficiently well characterized fluorescence quantum yield standards. As the standard’s Φf value directly contributes to the calculation of the sample’s Φf, its accuracy presents one of the main sources of uncertainty of relative Φf measurements. To close this gap, we developed a first set of 12 fluorescence quantum yield standards, which absorb and emit in the wavelength region of 330−1000 nm and absolutely determined their Φf values with two independently calibrated integrating sphere setups. Criteria for standard selection and the configuration of these novel fluorescence reference materials are given, and the certification procedure is presented including homogeneity and stability studies and the calculation of complete uncertainty budgets for the certified Φf values. The ultimate goal is to provide the community of fluorescence users with available reference materials as a basis for an improved comparability and reliability of quantum yield data since the measurement of this spectroscopic key property is an essential part of the characterization of any new emitter. KW - Optical spectroscopy KW - Traceability KW - Reference product KW - Dye KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Certification KW - Quality assurance PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05530 VL - 95 SP - 5671 EP - 5677 PB - American Chemical Society AN - OPUS4-58151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L N2 - This article reports temperature-dependent elastic properties (Young’s modulus, shear modulus) of three alloys measured by the dynamic resonance method. The alloys Ti-6Al-4V, Inconel IN718, and AISI 316 L were each investigated in a variant produced by an additive manufacturing processing route and by a conventional manufacturing processing route. The datasets include information on processing routes and parameters, heat treatments, grain size, specimen dimensions, and weight, as well as Young’s and shear modulus along with their measurement uncertainty. The process routes and methods are described in detail. The datasets were generated in an accredited testing lab, audited as BAM reference data, and are hosted in the open data repository Zenodo. Possible data usages include the verification of the correctness of the test setup via Young’s modulus comparison in low-cycle fatigue (LCF) or thermo-mechanical fatigue (TMF) testing campaigns, the design auf VHCF specimens and the use as input data for simulation purposes. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L KW - IN 718 KW - Ti-6Al-4V KW - Reference data KW - Temperature dependence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579716 DO - https://doi.org/10.1038/s41597-023-02387-6 VL - 10 IS - 1 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-57971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -