TY - JOUR A1 - Richter, Maria A1 - Güttler, Arne A1 - Pauli, Jutta A1 - Vogel, K. A1 - Homann, Christian A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Extending certified spectral fluorescence standards for the calibration and performance validation of fluorescence instruments to the NIR—closing the gap from 750 to 940 nm with two novel NIR dyes N2 - Fluorescence techniques such as fluorescence spectroscopy, microfluorometry, and fluorescence microscopy, providing spectral, intensity, polarization, and lifetime information, are amongst the most broadly utilized analytical methods in the life and materials sciences. However, the measured fluorescence data contain sample- and instrument-specific contributions, which hamper their comparability across instruments and laboratories. Comparable, instrument-independent fluorescence data require the determination of the fluorescence instrument’s wavelength-dependent spectral responsivity, also termed emission correction curve, for the same instrument settings as those used for the fluorescence measurements as a prerequisite for the subsequent correction of the measured instrument-specific data. Such a spectral correction is essential for the performance comparison of different fluorescent labels and reporters, quantitative fluorescence measurements, the determination of the fluorescence quantum yield, and the spectroscopic measure for the fluorescence efficiency of a fluorophore. Simple-to-use tools for obtaining emission correction curves are chromophore-based reference materials (RMs), referred to as fluorescence standards, with precisely known, preferably certified instrument-independent fluorescence spectra. However, for the increasingly used near-infrared (NIR) wavelength region >700 nm, at present, no spectral fluorescence standards are available. To close this gap, we developed two novel spectral fluorescence standards, BAM F007 and BAM-F009, with broad emission bands from about 580 to 940 nm in ethanolic solution. These liquid fluorescence standards currently under certification, which will be released in 2025, will expand the wavelength range of the already available certified Calibration Kit BAM F001b-F005b from about 300–730 to 940 nm. In this research article, we will detail the criteria utilized for dye and matrix selection and the homogeneity and stability tests accompanying dye certification as well as the calculation of the wavelength-dependent uncertainty budgets of the emission spectra BAM F007 and BAM-F009, determined with the traceably calibrated BAM reference spectrofluorometer. These fluorescence standards can provide the basis for comparable fluorescence measurements in the ultraviolet, visible, and NIR for the fluorescence community. KW - Quality assurance KW - Reference material KW - Fluorescence KW - Dye KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - NIR KW - Instrument performance validation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626317 DO - https://doi.org/10.1007/s00216-024-05723-w SN - 1618-2650 SP - 1 EP - 15 PB - Springer AN - OPUS4-62631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deumer, J. A1 - Andresen, Elina A1 - Gollwitzer, C. A1 - Schürmann, R. A1 - Resch-Genger, Ute T1 - Adding More Shape to Nanoscale Reference Materials-LiYF4:Yb,Tm Bipyramids as Standards for Sizing Methods and Particle Number Concentration N2 - The increasing industrial use of nanomaterials calls for the reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry, and test and reference materials (RMs) with sizes and shapes, closely matching real-world nonspheric nano-objects. An efficient strategy to minimize efforts in producing nanoscale RMs (nanoRMs) for establishing, validating, and standardizing methods for characterizing nanomaterials are multimethod nanoRMs. Ideal candidates are lanthanide-based, multicolor luminescent, and chemically inert nanoparticles (NPs) like upconversion nanoparticles (UCNPs), which can be prepared in different sizes, shapes, and chemical composition with various surface coatings. This makes UCNPs interesting candidates as standards not only for sizing methods, but also for element-analytical methods like laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), quantitative bioimaging methods like X-ray fluorescence computed tomography (XFCT), and luminescence methods and correlative measurements. Here, we explore the potential of two monodisperse LiYF4:Yb,Tm bipyramids with peak-to-peak distances of (43 ± 2) nm and (29 ± 2) nm as size standards for small-angle X-ray scattering (SAXS) and tools for establishing and validating the sophisticated simulations required for the analysis of SAXS data derived from dispersions of nonspheric nano-objects. These SAXS studies are supplemented by two-dimensional (2D)-transmission electron microscopy measurements of the UCNP bipyramids. Additionally, the particle number concentration of cyclohexane dispersions of these UCNP bipyramids is determined by absolute SAXS measurements, complemented by gravimetry, thermogravimetric analysis (TGA), and inductively coupled plasma optical emission spectrometry (ICP-OES). This approach enables traceable particle number concentration measurements of ligand-capped nonspheric particles with unknown chemical composition. KW - Fluorescence KW - Upconversion nanoparticles KW - SAXS KW - Particle number concentration KW - Reference material KW - Traceability KW - Quality assurance KW - Quantum yield KW - Spectroscopy KW - Synthesis KW - Quantification KW - NanoRM KW - Nano KW - Particle KW - Bipyramid KW - Reference data KW - Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-617940 DO - https://doi.org/10.1021/acs.analchem.4c03641 SP - 1 EP - 8 PB - ACS Publications AN - OPUS4-61794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Getting it right with photoluminescence quantum yields of molecular and nanoscale luminophores and luminescent particles N2 - Photophysical and mechanistic studies, the comparison of different emitter classes, and the rational design of the next generation of molecular and nanoscale reporters require quantitative photoluminescence measurements and the reliable determination of the key performance parameter photoluminescence quantum yield (QY), i.e., the number of emitted per absorbed photons. This is of special importance for all photoluminescence applications in the life and material sciences in the UV/vis/NIR/SWIR. To improve the reliability and comparability of photoluminescence and QY measurements across laboratories, pitfalls, achievable uncertainties, and material-specific effects related to certain emitter classes must be explored. Also, suitable protocols and reference materials are needed which have been validated in interlaboratory comparisons for different wavelength regions and transparent and scattering luminophores.[1] Based on absolute and relative photoluminescence measurements of functional dyes and nanomaterials like semiconductor quantum dots and rods, spectrally shifting lanthanide upconversion nanocrystals, perovskites, and YAG:Cer converter materials, reliable methods for determining QY of transparent and scattering luminophores, nonlinear emitters, and solid luminescent nanomaterials have been developed.[2,3] Thereby, material- and method-related uncertainties of relative and absolute QY measurements and achievable uncertainties could be quantified for linear and nonlinear UV/vis/NIR/SWIR emitters and lately for also luminescent and scattering materials and solid phoshors, here in an interlaboratory comparison of three labs utilizing integrating sphere spectroscopy.[4,5] In addition, to provide simple tools for a better comparability of QY measurements, recently, a first set of UV/vis/NIR quantum yield standards has been developed and certified with complete uncertainty budgets.[6] In the following, the outcome of these studies will be presented, thereby addressing common pitfalls and providing recommendations on the performance of reliable QY measurements of linear and non-linear emitters in transparent, scattering, and solid samples. T2 - 29th Lecture Conference on Photochemistry (LCP 2024) GDCh CY - Mainz, Germany DA - 16.09.2024 KW - Nanoparticle KW - Nano KW - Luminescence KW - Quality assurance KW - Synthesis KW - Standardization KW - Reference material KW - Quantum yield KW - Fluorescence KW - Reference data KW - Integrating sphere spectroscopy KW - ILC KW - Converter material KW - YAG:Ce KW - Optoceramic PY - 2024 AN - OPUS4-61075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Richter, Maria A1 - Güttler, Arne A1 - Pauli, Jutta A1 - Vogel, K. A1 - Homann, Christian A1 - Würth, Christian T1 - Extending Certified Spectral Fluorescence Standards for the Calibration and Performance Validation of Fluorescence Instruments to the NIR – Closing the Gap from 750 nm to 940 nm with Two Novel NIR Dyes N2 - Fluorescence methods provide spectral, intensity, polarization, and lifetime information, which contain sample- and instrument-specific contributions. Fluorescence data, comparable across instruments and laboratories, require validated calibration procedures and certified fluorescence standards. KW - Quality assurance KW - Reference material KW - Fluorescence KW - Dye KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - NIR KW - Instrument performance validation PY - 2025 SP - 1 EP - 4 PB - Springer Nature CY - London AN - OPUS4-62739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Design and Quantitative Characterization of Functional Molecular Chromophores and Nanomaterials with UV/vis/NIR/IR Emission – An Overview of Research Activities in Division Biophotonics N2 - In the focus of division Biophotonics are the design, preparation, analytical and spectroscopic characterization, and application of molecular and nanoscale functional materials, particularly materials with a photoluminescence in the visible, near infrared (NIR) and short-wave infrared (SWIR). This includes optical reporters for bioimaging and sensing, security and authentication barcodes, and materials for solid state lighting, energy conversion, and photovoltaics. For the identification of optimum particle structures quantitative spectroscopic studies are performed under application-relevant conditions, focusing on the key performance parameter photoluminescence quantum yield. In addition, simple, cost-efficient, and standardizable strategies for quantifying functional groups on the surface of nano- and microparticles are developed, here with a focus on optical assays and electrochemical titration methods, cross-validated by more advanced methods such as quantitative NMR. In addition, reference materials and reference products are developed for optical methods, particularly luminescence techniques, and for analytical methods utilized for the characterization of nanomaterials. T2 - Projekttreffen Nile-Chrome 2.0 CY - Mainz, Germany DA - 11.12.2023 KW - Fluorescence KW - Quantum yield KW - Optical spectroscopy KW - Reference material KW - Reference data KW - Quality assurance KW - Dye KW - Reference product KW - NIR KW - SWIR KW - Nano KW - Particle KW - Silica KW - Polymer KW - Surface group analysis KW - Sensor molecules PY - 2023 AN - OPUS4-59123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Photoluminescence quantum yields of molecular & nanoscale luminophores in the UV/VIS/NIR/SWIR in dispersion and in the solid state N2 - Photophysical and mechanistic studies, the comparison of different emitter classes, and the rational design of the next generation of molecular and nanoscale reporters require quantitative photoluminescence measurements and the reliable determination of the key performance parameter photoluminescence quantum yield (QY), i.e., the number of emitted per absorbed photons. This is of special importance for all photoluminescence applications in the life and material sciences in the UV/vis/NIR/SWIR. T2 - MAF 2024 Conference CY - Valencia, Spain DA - 08.09.2024 KW - Nanoparticle KW - Nano KW - Luminescence KW - Quality assurance KW - Synthesis KW - Standardization KW - Reference material KW - Quantum yield KW - Fluorescence KW - Reference data KW - Integrating sphere spectroscopy KW - ILC KW - Converter material PY - 2024 AN - OPUS4-61072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, J. A1 - Güttler, Arne A1 - Schneider, T. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification N2 - The rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. Main prerequisites for reliable Φf measurements, which are for transparent luminophore solutions commonly done relative to a reference, i.e., a fluorescence quantum yield standard of known Φf, are reliable and validated instrument calibration procedures to consider wavelength-, polarization-, and time-dependent instrument specific signal contributions, and sufficiently well characterized fluorescence quantum yield standards. As the standard’s Φf value directly contributes to the calculation of the sample’s Φf, its accuracy presents one of the main sources of uncertainty of relative Φf measurements. To close this gap, we developed a first set of 12 fluorescence quantum yield standards, which absorb and emit in the wavelength region of 330−1000 nm and absolutely determined their Φf values with two independently calibrated integrating sphere setups. Criteria for standard selection and the configuration of these novel fluorescence reference materials are given, and the certification procedure is presented including homogeneity and stability studies and the calculation of complete uncertainty budgets for the certified Φf values. The ultimate goal is to provide the community of fluorescence users with available reference materials as a basis for an improved comparability and reliability of quantum yield data since the measurement of this spectroscopic key property is an essential part of the characterization of any new emitter. KW - Optical spectroscopy KW - Traceability KW - Reference product KW - Dye KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Certification KW - Quality assurance PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05530 VL - 95 SP - 5671 EP - 5677 PB - American Chemical Society AN - OPUS4-58151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Homann, Christian A1 - Scholtz, Lena A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Validated and standardized measurements and quantification of surface functionalities on nanoparticles N2 - Surface-functionalized organic and inorganic engineered nanomaterials (NMs) are widely applied in the life and materials sciences. NM performance depends on key factors such as particle size and shape, crystal phase, morphology, chemical composition, and surface chemistry, i.e., surface coatings, functional groups (FGs), and ligands.1 The latter controls their processability and interaction with the environment and largely their possible toxicity. Thus, methods for FG quantification are important tools for quality control of NM production processes and can foster the sustainable development of functional and safe(r) NMs. This underlines the importance of validated and standardized analytical methods for surface analysis and reference materials.2 This encouraged us to explore simple and versatile tools for quantifying common bioanalytically relevant FGs such as optical assays, electrochemical titration methods, quantitative nuclear magnetic resonance spectroscopy (qNMR), and X-Ray photoelectron spectroscopy (XPS) and to perform a first interlaboratory comparison (ILC) on surface FG quantification.3,4 In a follow-up ILC, BAM and NRC explored qNMR sample preparation, measurement, and data evaluation protocols for commercial and custom-made aminated SiO2 NPs with sizes of 20-100 nm, different amounts of surface amino FGs, and different porosity.5,6 First, the number of amino FGs accessible for a dye reporter was determined with a cost-efficient, automated optical fluorescamine assay. Then, qNMR workflows and protocols were stepwise fine-tuned. The qNMR ILC was complemented by joint XPS measurements. BAM also examined the applicability of fast and automatable potentiometric titrations to screen the total amount of (de)protonable FGs on aminated SiO2 NPs. Our results underline the need to evaluate protocols for FG quantification in ILCs and the advantages of multi-method characterization strategies for efficient method cross validation. T2 - Surface and Micro/Nano Analysis Working Group CY - Paris, France DA - 08.04.2025 KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nano KW - Particle KW - Surface analysis KW - XPS KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - QNMR KW - Potentiometry PY - 2025 AN - OPUS4-62969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -