TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Additive manufacturing (AM) technologies are experiencing an exceedingly rapid growth, driven by their potential through layer wise deposition for transformational improvements of engineering design, leading to efficiency and performance improvements. Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) method which permits the fabrication of complex structures that cannot otherwise be produced via conventional subtractive manufacturing methods. Nevertheless, the rapid cooling rates associated with this process results in the formation of significant and complex residual stress (RS) fields. A large body of both experimental and simulation research has been dedicated in recent years to the control and mitigation of RS in AM. In order to validate simulations with the end goal of being able to model the residual stress state in AM components and to devise strategies for their reduction during manufacturing, experimental methods need to be able to accurately determine 3D residual stresses fields in complex geometries. Several destructive and non-destructive methods can be used to analyze the RS state, the choice of which depends on the geometry and the information required. Diffraction-based methods using penetrating neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk residual stresses in complex components and track their changes following applied thermal or mechanical loads. This presentation will overview the success stories of using large scale facilities by the BAM for the characterization of residual stresses in additively manufactured metallic alloys. In particular, the study of the influence of process parameters on the residual stress state and the relaxation of these stresses through heat treatment will be presented. However there remains challenges to overcome particularly of the hypotheses underlying the experimental determination of residual stresses, which will be discussed. T2 - 10th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation – MECASENS 2021 CY - Prague, Czech Republic DA - 25.11.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - L-PBF KW - AGIL PY - 2021 AN - OPUS4-54105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander T1 - Experimental investigation on cyclic R-curves for additively manufactured 316L steel N2 - The present study deals with the experimental characterization of short crack propagation in SLM (selective-laser-melting) manufactured stainless steel. More specifically, the determination of cyclic R-curves is discussed. This describes the dependency of the crack propagation threshold on crack growth during the short crack propagation stage. For metals, the threshold, starting at a material-intrinsic value, increases until it reaches a value independent of the crack length due to crack closure phenomena which build up at that stage. The cyclic R-curve, when used in the frame of a cyclic R curve analysis, characterizes the resistance of a material to fatigue crack growth and the ability to arrest a physically short crack. Thus, it is the link between classical fatigue and fracture mechanics. In the high-cycle-fatigue range, the short crack propagation stage dominates the overall lifetime, i.e., the number of cycles until failure. Below the fatigue limit crack arrest of hitherto propagable micro-cracks will occur. The effort for the experimental characterization of the short fatigue crack propagation behavior and the cyclic R-curve is very high compared to experiments on long crack propagation. A very exact measurement of crack extension is required, since small increments need to be depicted. Pre-cracking must leave a closure free initial crack, since closure must be build up only by the cyclic R-curve. The closure-free status is achieved by compression pre-cracking. The aim of the present study is an insight into the influence of an AM process on the short crack propagation threshold. Cyclic R-curves are experimentally determined at different load-ratios for 316L austenitic steel specimens produced by SLM and conventional manufacturing. Residual stresses are measured in the crack plane and their influence on the cyclic R-curve is discussed. T2 - ESIAM19 CY - Trondheim, Norway DA - 09.09.2019 KW - fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 AN - OPUS4-49412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago ED - Madia, Mauro ED - Zerbst, Uwe T1 - Experimental investigation on cyclic R-curves for additively manufactured 316L steel N2 - The present study deals with the experimental characterization of short crack propagation in SLM (selective-laser-melting) manufactured stainless steel. More specifically, the determination of cyclic R-curves is discussed. This describes the dependency of the crack propagation threshold on crack growth during the short crack propagation stage. For metals, the threshold, starting at a material-intrinsic value, increases until it reaches a value independent of the crack length due to crack closure phenomena which build up at that stage. The cyclic R-curve, when used in the frame of a cyclic R curve analysis, characterizes the resistance of a material to fatigue crack growth and the ability to arrest a physically short crack. Thus, it is the link between classical fatigue and fracture mechanics. In the high-cycle-fatigue range, the short crack propagation stage dominates the overall lifetime, i.e., the number of cycles until failure. Below the fatigue limit crack arrest of hitherto propagable micro-cracks will occur. The effort for the experimental characterization of the short fatigue crack propagation behavior and the cyclic R-curve is very high compared to experiments on long crack propagation. A very exact measurement of crack extension is required, since small increments need to be depicted. Pre-cracking must leave a closure free initial crack, since closure must be build up only by the cyclic R-curve. The closure-free status is achieved by compression pre-cracking. The aim of the present study is an insight into the influence of an AM process on the short crack propagation threshold. Cyclic R-curves are experimentally determined at different load-ratios for 316L austenitic steel specimens produced by SLM and conventional manufacturing. Residual stresses are measured in the crack plane and their influence on the cyclic R-curve is discussed. T2 - ESIAM19 CY - Trondheim, Norway DA - 09.09.2019 KW - Fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 SP - 1 EP - 8 AN - OPUS4-49416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Investigation on short crack propagation in additive manufactured steel N2 - The assessment of high cycle fatigue in additive manufactured (AM) components is a challenge due to complex microstructure, anisotropic material behavior, residual stresses and porosity / lack-of-fusion defects. Due to the statistical distribution of defects, a high scatter band of S-N-curves is expected. The fracture mechanics-based fatigue assessment of additive manufactured components must consider the propagation of short cracks emanating from defects. In this work, the fatigue crack propagation resistance in the short and large crack regimes of additive and conventionally manufactured AISI 316L stainless steel is examined experimentally based on the cyclic R-curve. However, remaining residual stresses in the AM specimen lead to unexpected and dramatic crack-growth during the pre-cracking procedure. T2 - Workshop on Additive Manufacturing CY - BAM Berlin, Germany DA - 13.05.2019 KW - Fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 AN - OPUS4-49419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -