TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy (rCCA) using the CALPHAD method N2 - Multi-principal-element alloys (MPEAs), have recently come to the attention of the scientific community due to their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Chemically Complex Alloy KW - CALPHAD KW - Electromicroscopy PY - 2019 AN - OPUS4-50730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Dymek, S. A1 - Kranzmann, Axel T1 - Corrosion behaviour of Ni-Cr-Mo-W coatings in environments containing sulfur N2 - The ferritic steel 13CrMo4-5 due to good properties with relation to attractive price is frequently use in power plants industry. According EN10028-2 this steel can be used up to 570 °C because of its creep behavior but its corrosion resistance limits the use frequently to lower temperatures, depending on gas temperature and slag formation. The corrosion test were performed in environment containing mixture of gases like: O2, COx, SOx and ashes, with elements e.g. Na, Cl, Ca, Si, C, Fe, Al. Exposure time was respectively 240 h, 1000 h and 4500 h in temperature 600 °C. The oxide scale on the 13CrMo4-5 steel was significant thicker than for In686 coating and the difference increase according for longer exposure time. The microstructure, chemical and phase composition of the oxide scales were investigated by means of a light microscope, the electron scanning and transmission microscopes (SEM,TEM) equipped with the EDS detectors. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - High temperature KW - Corrosion resistance KW - Laser cladding KW - Inconel 686 KW - Aggressive environment PY - 2019 AN - OPUS4-49358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - The heat treatment of L-PBF Inconel 718: A manyfold problem N2 - The interest to additively manufacture Nickel-based superalloys has substantially grown within the past decade both academically and industrially. More specifically, additive manufacturing processes such as laser powder bed fusion (LPBF) offer the ability to produce dense parts within a single manufacturing step. In fact, the exceptional freedom in design associated with the layer-based nature of the processes is of particular interest for the complex shapes typically required in turbine applications. In certain cases, the overall part performance can be achieved by tailoring the microstructure and the crystallographic texture to the specific application. However, these advantages must be paid at a price: the large local temperature gradients associated with the rapid melting and solidification produce parts that inherently contain large residual stress in the as-manufactured state. In addition, the presence of pores in the final part may further affect the in-service part failure. As among Nickel-based alloys Inconel 718 exhibits excellent weldability, this alloy has been widely studied in open research in the domain of LPBF. However, significant microsegregation of the heavier alloying elements such as Niobium and Molybdenum accompanied by dislocation entanglements may preclude the application of conventional heat treatment schedules. Therefore, different post processing heat treatments are required for laser powder bed fused Inconel 718 as compared to conventional variants of the same alloy. In this study, we investigated two different heat treatment routes for LPBF Inconel 718. In a first routine, the samples were stress relieved and subsequently subjected to hot isostatic pressing (HIP) followed by a solution heat treatment and a two-step age (referred to as FHT). In a second routine, the samples were subjected to a single-step direct age post stress relieving heat treatment (referred to DA). We investigated the consequences of such heat treatment schedules on the microstructure, texture, and mechanical behavior. We show that by applying a DA heat treatment the typical columnar microstructure possessing a crystallographic texture is retained, while an equiaxed untextured microstructure prevails in case of an FHT heat treatment. We further evaluate how these heat treatments affect the mechanical behaviour on the macroscopic and microscopic scale. T2 - 4th European Symposium on Superalloys and their Applications EuroSuperalloys 2022 CY - Bamberg, Germany DA - 18.09.2022 KW - Electron Backscatter Diffraction KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Mechanical Behavior KW - Heat Treatment KW - X-Ray Diffraction PY - 2022 AN - OPUS4-55811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Nolze, Gert T1 - Microstructure Characterization of Additively Manufactured Austenitic Steel 316L N2 - Additive manufacturing processes (AM) offer different advantages compared to conventional manufacturing processes. In this work the microstructure of austenitic steel 316L, manufactured with Selective Laser Melting (SLM), and the powder, used for the process, were investigated. T2 - BAM workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - 316L KW - Selective laser melting KW - Microstructure analysis KW - Metal powder characterization PY - 2019 AN - OPUS4-49884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kranzmann, Axel A1 - Midtlyng, Jan A1 - Schlitte, I.-V. A1 - Escoda de Pablo, S. T1 - Corrosion of VM12 SHC in Salt melt N2 - Alkali and alkaline earth chlorides are discussed as heat storage media and are characterized by their low price and high availability. Disadvantages are a high corrosion rate and formation of Cr6+ ions in the melt, as observed in various binary chlorine salt melts. In our work the system NaCl-KCl-MgCl2 is considered. The storage capacity in this salt system is between 2 and 3 MWh per 10 t salt, depending on composition, melting temperature and working temperature. At the same time the system offers a eutectic line, which allows a high variance of the composition and possibly different corrosion rates can be observed. Corrosion tests in melts were carried out and the corrosion layers investigated. The tests with chloride melts on 12% Cr steel show an inner corrosion zone of up to 40 µm depth after 96 hours. The corrosion mechanisms and potential solutions are discussed. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Salt melt KW - Corrosion KW - VM12 SHC PY - 2019 AN - OPUS4-50759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Gonzalez-Martinez, I. A1 - Agudo Jacome, Leonardo T1 - Damage induced by electric field of gold microparticles on silicon oxide substrate in the scanning electron microscope N2 - 1. Introduction A normally unwanted process that can arise when converging an electron beam onto, e.g. microparticles, has been called "damage induced by electric field" (DIEF) [1]. By DIEF, the convergent electron beam (CEB) imparts a high amount of energy to the microparticle locally and strongly interacts with its atoms. At a specific current density J, which can be controlled by the convergence angle α, the irradiated material begins to transform. The phenomenon of expelling nanomaterial from microparticles under the influence of a convergent electron beam (CB) in a transmission electron microscope (TEM) has been largely studied [2]. Several types of nanoparticles (NPs) have been observed for different metallic materials and metal oxides after specific CB protocols (P) in the TEM. Thus, DIEF can be used as a promising synthesis method controlled changes of micrometric material to create new nanometric material compositions and morphologies. While these reactions have been observed in situ at the high acceleration voltages associated with TEM, it remains unclear whether the SEM can also be used to fabricate NPs via DIEF. In contrast to TEM there is no possibility to statically convert the electron beam to a range of α to reach the needed J as in TEM. Instead, the scanning parameters and the magnification can be manipulated so as to find an integrated J. Considering that the scanning electron microscope (SEM) is easier to use, more accessible and cheaper than a TEM, here we explore the possibility to transfer the concepts of DIEF known to operate in the TEM for in situ NP generation SEM. 2. Objectives The main goal is to determine whether DIEF can be translated to the SEM perform to controlled in situ fabrication of nanoparticles from microparticles, using gold microparticles on amorphous SiO substrate as precursors. We determine what experimental parameters must be taken into account to create SEM-based CBPs for NP creation in the SEM with these materials. 3. Materials & methods Gold microparticles with diameter of around 1 to 3 µm were deposited on electron transparent amorphous SiO/SiO2 substrate. Using a convergent electron beam protocol (CBP) in a scanning electron microscope (SEM) at an acceleration voltage of 30 kV, the gold microparticles were irradiated until a production of NPs takes place as shown in figure 1. The beam current varied between 16 and 23 nA. 4. Results Depending on the CBP parameters, either only Au NPs or a mixture of Au and Si NPs are produced. The particle size ranges from a few nm up to 100 nm, and it depends on the distance of the NP to the initial position of the microparticle. Further beam parameters such as the dwell time, the effective irradiated volume and particle size determine whether NPs are produced or if the microparticles only are expelled from the substrate without reacting. 5. Conclusion The SEM can be used as an instrument for synthesizing nanomaterials via DIEF. Different CBP protocols can be applied for obtaining either gold nanoparticles or silicon + gold nanoparticles T2 - Microscopy Conference CY - Darmstadt, Germany DA - 26.02.2023 KW - Scanning electron microscopy (SEM) KW - Gold nanoparticles KW - Electron beam induced modification PY - 2023 AN - OPUS4-58261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Hesse, René A1 - Agudo Jacome, Leonardo A1 - Gonzalez-Martinez, I. T1 - Complex artificial features on a TEM transparent membrane N2 - The phenomenon of expelling nanomaterial from microparticles of different materials, such as Au, WO3 or B2O3 under the influence of a convergent electron beam (CB) of a transmission electron microscope (TEM) was reviewed by Ignacio Gonzalez-Martinez [1]. Converging the e-beam in a TEM means that a high amount of energy enters the microparticle at a very local place and interact with the matter. Obviously, during the convergent beam protocol, no imaging with the electron beam is possible, but at the end, nanoparticles with different appearances lie down next to the microparticle while its size is reduced. Hence, there is a blind spot in the observation, which we want to fill, as we want to help clarify the nature of the expelling phenomenon. One hypothesis that explains the phenomenon is the so-called damage (of the microparticle) induced by an electric field (DIEF). Within this theory, the material is ionized and expelled in form of ionic waves. Our aim is therefore to fabricate specimens with artificial microlandscapes, as schematically exemplified in figure 1a), using the focused ion beam (FIB) and micromanipulators, as experimental setups to follow the paths of the expelled material. As a first step towards the fabrication of such specimen, we make experimental feasibility studies for each fabrication method, FIB structuring with Ga+ ion beam and micromanipulated microparticle deposition. Bridges (gray regions in Fig. 1) are created by milling a commercially available electron transparent membrane (silicon oxide or carbon) of a Cu-TEM grid. Platinum or carbon walls (blue features in Fig. 1) are built to stand on those bridges. Microparticles (yellow sphere in Fig. 1) of gold or other material are deposited in the center of the bridges. Figure 2a) shows four square holes (black area) and between them the residual silicon oxide membrane bridges (dark grey). On top of the bridges, walls (light grey) are deposited. The width of the bridges is different, the walls overlap the holes as well as the distance between the walls is very small, so these and other parameters need to be optimized. Figure 2b) shows a square hole (black) with bridges (white) on the right side on top of a carbon membrane (grey). There are still some obstacles which needs to be eliminated. For instance, the deposition process of the walls is not reliable as visible at the wall on top where a hole arises instead of a wall. These studies are still in progress and the results are further discussed in terms of the applicability for the DIEF experiment in the TEM. T2 - 4th EuFN and FIT4NANO Joint Workshop / Meeting CY - Vienna, Austria DA - 27.09.2021 KW - Transmission electron microscope (TEM) KW - Sample preparation KW - Micromanipulation KW - Focussed ion beam growth KW - Nano-landscape PY - 2021 AN - OPUS4-58259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jacome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs.[1] Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - European Winter Conference on Plasma Spectrochemistry (EWCPS 2023) CY - Ljubljana, Slovenia DA - 29.01.2023 KW - Lithium-ion batteries KW - Aging mechanisms KW - Depth-profiling PY - 2023 AN - OPUS4-56992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Peetz, Andreas A1 - Kranzmann, Axel T1 - Interaction of Reactive Components in CO2 Streams with Transport Pipeline Steel X70 N2 - In context of CLUSTER project, impacts of impurities (SO2, NO2, O2, CO, H2S, H2, N2, Ar and H2O) in CO2 streams captured from different sources in a regional cluster on transport, injection and storage were investigated. Corrosion studies of oxidizing, reductive or mixed atmospheres towards transport pipeline steel X70 were carried out applying high pressure (10 MPa) at low temperatures (278 K or 313 K). T2 - GHGT-14 Conference CY - Melbourne, Australia DA - 22.10.2018 KW - Carbon capture KW - CCS KW - Carbon dioxide KW - Corrosion PY - 2018 AN - OPUS4-47017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Menneken, Martina A1 - Stephan-Scherb, Christiane T1 - Early oxidation and sulfidation of high temperature model alloys: An EDXRD in situ study N2 - The fundamental impact of sulfur and water on corrosion rates and potential failure of the exposed material is well known. However, the access to the related corrosion mechanism causing material degradation is often a problem to solve. This study investigates the effect of SO2 and water vapor in the initial stages of corrosion of an Fe9Cr0.5Mn model alloy at 650 °C in situ. The analysis was carried out under laboratory conditions using energy-dispersive X-ray diffraction (EDXRD). T2 - Dechema EFC Workshop CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - Sulfidation KW - Model alloy KW - Oxidation PY - 2018 AN - OPUS4-46134 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - In-situ observation of the hydrogen behaviour in austenitic stainless steel by time-of-flight secondary ion mass spectrometry during mechanical loading N2 - The reduction of harmful emissions to the environment is one of the most urgent challenges of our time. To achieve this goal, it is inevitable to shift from using fossil fuels to renewable energy sources. Within this transition, hydrogen can play a key role serving as fuel in transportation and as means for energy storage. The storage and transport of hydrogen using austenitic stainless steels as the infrastructure, as well as the use of these grades in hydrogen containing aggressive environments, remains problematic. The degradation of the mechanical properties and the possibility of phase transformation by ingress and accumulation of hydrogen are the main drawbacks. Advanced studies of the behaviour of hydrogen in austenite is necessary to fully understand the occurring damage processes. This knowledge is crucial for the safe use of components in industry and transportation facilities of hydrogen. A powerful tool for depicting the distribution of hydrogen in steels, with high accuracy and resolution, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). We here present a comprehensive research on the hydrogen degradation processes in AISI 304L based on electrochemical charging and subsequent ToF-SIMS experiments. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed afterwards. All the gathered data was treated employing data fusion, thus creating a thorough portrait of hydrogen diffusion and its damaging effects in AISI 304L. Specimens were charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and traces existing in the material or adsorbed from the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw onclusions from the experiments. T2 - International Conference on Metals and Hydrogen; Steely Hydrogen 2018 CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Deuterium KW - ToF-SIMS KW - AISI 304L PY - 2018 AN - OPUS4-45079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sonnenburg, Elke A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Agudo Jácome, Leonardo T1 - Präparation, Kontrastierung und Darstellung des Gefüges von additiv gefertigtem austenitischem Stahl 316L N2 - Der weit verbreitete austenitische Stahl 316L soll auch mittels additiver Fertigung verarbeitet werden (316L-AM). Zur Entwicklung optimaler Aufbauverfahren ist ein detailliertes Verständnis des Gefüges notwendig. Das additiv aufgebaute Gefüge zeigt eine Mikrostruktur, die geprägt ist von sehr hohen Abkühlraten und gerichtetem Kornwachstum. Mittels klassischer Metallographie können die Charakteristika des Gefüges wie Körner, Subkörner und Schmelzlinien sichtbar gemacht werden. Mittels EBSD werden Kristallorientierungen ermittelt und bildhaft aufbereitet. Die Feinstruktur der Körner wird im REM in der Übersicht aufgelöst. Erst im TEM kann bei hoher Vergrößerung die Natur der Zellstruktur quantitativ ermittelt werden. T2 - Metallographie 2020 CY - Online meeting DA - 16.09.2020 KW - Präparation KW - Kontrastierung KW - Additiv gefertigter Stahl PY - 2020 AN - OPUS4-51244 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early Material Damage in Equimolar CrMnFeCoNi in Mixed Oxidizing/Sulfiding Hot Gas Atmosphere N2 - The use of more and more varied fuels implies an increased list of criteria that need to be addressed when choosing a material for a combustion chamber and its supply pipes. The materials must be very resistant against corrosion, especially when the process takes place at temperatures above 500°C. In this work the influence of SO2 on the surface of the “Cantor alloy” is investigated. T2 - HEA-Symposium "Potential for industrial applications" CY - Dresden, Germany DA - 12.05.2022 KW - High entropy alloy KW - Corrosion KW - Sulfiding KW - Transmission electron microscopy PY - 2022 AN - OPUS4-55397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina A1 - Gonzalez-Martinez, I. A1 - Agudo Jacome, Leonardo T1 - Damage induced by electric field of microparticles in the electron microscope N2 - Damage induced by electric field (DIEF) that happens in the transmission electron microscope (TEM) when converging the electron beam (e-beam) on microparticles (MPs) can be used to synthesis new nanomaterial and nanomaterial compositions. The research questions are to clarify the limits and possibilities of the method regarding materials that can be produced, systems to which it is applicable and working beam parameters. Synthesis of nano-objects from microparticles using DIEF in TEM could be shown for different materials. Additionally, DIEF using the e-beam in a scanning electron microscope (SEM) can also be used to synthesis nano-objects. A deeper material analysis of this nano-objects was done using TEM and shows that the material of the nanoparticles (NPs) can be gold or/and silicon. Furthermore, the size of the NPs depends on the distance to the center of DIEF whereby the larger NPs are closer to the center. The areas of gold NPs are promising candidates for plasmonic or photonic devices for energy storage or transport. T2 - PhD-Day 2022 CY - Berlin, Germany DA - 06.09.2022 KW - Electron microscopy KW - Electron beam induced modification KW - Gold nanoparticles PY - 2022 AN - OPUS4-58264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Simone A1 - Altmann, Korinna A1 - Wohlleben, W. T1 - Influence of the pH Value to the Degradation of Ester-Based Thermoplastic Polyurethanes N2 - Microplastics are solid polymeric particles with a size of 1-1000 μm (ISO/TR21960:2020), which can be emitted from mismanaged waste into the environment, where microplastic is now ubiquitous. What happens to the microplastics after ending up in the environment, which risks entail and what effects it has are not sufficiently clarified up to now. The most certain issue is that the plastic particles in the environment are exposed to natural ageing, are fragmenting and degrading, such that the potential risk to ecosystems and humans is increasing due to the formation of smaller and smaller particles, potentially even including nanoplastics, if these are ingested before their further degradation. Therefore, and in view of a possible registration of polymers under REACH in the future, it is necessary to investigate the degradation of thermoplastic polyurethanes (TPU) regarding hydrolysis stability to evaluate possible risks and effects to the environment. In the present studies, one thermoplastic polyurethane – with and without hydrolysis stabilizer – is exposed to different pH buffers at 50°C for 14 days to investigate hydrolysis depending to different pH values (acid, alkali and neutral) based on OECD guideline TG111. The hydrolysis behavior of the TPUs is characterized by surface sensitive techniques and on bulk properties. First degradation effects can be detected by SEC. Hydrolysis, especially under acidic and basic conditions, leads to chain scissions to lower molecular masses. Furthermore, the degradation products which indicate the structure of the bulk material were detected by thermo-analytical methods like TGA-FTIR for the small degradation products and the thermo extraction/desorption-gaschromatography/mass spectrometry (TED-GC/MS) for bigger degradation products. Acidic and basic hydrolysis shows the same degradation behavior which is caused by a preferred scission of the ester and urethane functionalities. Surface-sensitive techniques such as XPS demonstrate less carboxylic acid formation at acidic than at alkaline pH value in the TPU without stabilator, where as the TPU with stabilator ages to the same extent in both pH ranges. Altogether, the hydrolysis of TPUs – independently of added stabilizer or not – in acid and alkali environment is accelerated compared to the neutral hydrolysis. T2 - SETAC CY - Dubin, Ireland DA - 30.04.2023 KW - Degradation KW - Thermoplastic Polyurethane KW - Microplastic KW - Polymer Hydrolysis KW - Polymer 3R KW - REACH PY - 2023 AN - OPUS4-58906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meurer, Maren A1 - Wiesner, Yosri A1 - Geburtig, Anja A1 - Waniek, Tassilo A1 - Altmann, Korinna T1 - Is olypropylene relevant for microplastic analytics? N2 - Nowadays, in every terrestrial and aquatic ecosystem, even in the remotest areas, small residues of plastics, the so called microplastic (MP) can be found. MPs are particles with a size of 1-1000 µm (ISO/TR 21960:2020), mainly containing synthetic polymers like polyethylene (PE), polypropylene (PP), polystyrene (PS) or polyethylene terephthalate (PET). Even styrene-butadiene rubber (SBR) as an indication for tire wear is included due to similar particle formation. To understand the MPs consequences to the environment, it is of high priority to capture its extent of contamination. It is surprising that in the analysis of polymer masses in environmental samples, PE, PS and SBR are often detected, but only small amounts of PP, although this is the second most commonly produced standard plastic and many MP particles originate from carelessly disposed packaging materials. This presentation provides hypotheses about the reasons of rare PP identification and mass quantification in environmental samples. Different investigations of pristine PP and representative environmental samples, including the pre-treatment by Accelerated Solvent Extraction (ASE) or with density separation followed by the thermal extraction / desorption gas chromatography-mass spectrometry (TED-GC/MS) are presented. The results are discussed according to the material properties and a possible degradation mechanism under different weathering conditions which indicate less stability under relevant storage conditions. T2 - Society of Environmental Toxicology and Chemistry CY - Dublin, Ireland DA - 30.04.2023 KW - Sample preparation KW - Polypropylene KW - Microplastic KW - Degradation PY - 2023 AN - OPUS4-57474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dittmann, Daniel A1 - Saal, Leon A1 - Zietzschmann, F. A1 - Mai, M. A1 - Altmann, Korinna A1 - Al-Sabbagh, Dominik A1 - Schumann, P. A1 - Ruhl, A. S. A1 - Jekel, M. A1 - Braun, U. T1 - Aktivkohle-Charakterisierung als weiterer Schlüssel für das Verständnis der Spurenstoffadsorption in der 4. Reinigungsstufe N2 - Aktivkohle ≠ Aktivkohle, Adäquate Materialcharakterisierung - Voraussetzung für Adsorptionsprognosen und Wasserspezifische Auswahl von Aktivkohleprodukten. Ausblick: Publikationen zu Aktivkohlecharakterisierung und Adsorptionsprognose in Vorbereitung T2 - Wasser 2021 - Jahrestagung der Wasserchemischen Gesellschaft CY - Online meeting DA - 10.05.2021 KW - Aktivkohle KW - Thermogravimetrie KW - Zersetzungsgasanalyse KW - Proximatanalyse PY - 2021 AN - OPUS4-52742 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Portela, R A1 - Fernández-Lozano, J. F. A1 - Barbero, F. A1 - Bussy, C. A1 - Potthoff, A. A1 - Costa, A. A1 - Komlavi Afanou, A. J. T1 - Material Selection Strategy N2 - This poster is a summary of the material used in the PlasticsFatE project. It indicates the strategies for testing of various polymer properties next to each other according to risk and hazard assessment. T2 - CUSP annual meeting and conference CY - Utrecht, Netherlands DA - 12.09.2023 KW - Microplastics KW - CUSP KW - Material selection PY - 2023 AN - OPUS4-58311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Eisentraut, Paul A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Müller, Axel A1 - Braun, Ulrike T1 - Analysis of microplastics in theory and in practice N2 - Due to the favorable properties of polymers, their production and thus their input into the environment has increased significantly in recent decades. Currently, FTIR or Raman spectroscopy are mainly applied for the analysis of microplastic particles (MP) in environmental samples. However, these methods have great difficulties in determining metrologically traceable MP values, especially with regard to the limiting values, as preferred in regulation. Therefore, we developed a systematic and fast thermoanalytical method called TED-GC-MS (thermal extraction desorption gas chromatography mass spectrometry), which determines mass contents. Now the current goal is the determination of its process parameters. This poster illustrates the theoretical requirements for MP analysis (left side) and contrast them with the current state of research (right side).Unexpected practical problems are presented and the relatively new method is discussed concerning the quality requirements of well-established methods such as LC-or GC-MS. T2 - Eurachem Workshop - Uncertainty from sampling and analysis for accredited laboratories CY - Berlin, Germany DA - 19.11.2019 KW - Microplastics KW - TED-GC-MS KW - Reference materials PY - 2019 AN - OPUS4-49665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -