TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Benchmarking of polymer materials for tribological applications in hydrogen N2 - The focus of this study is to evaluate the influence of hydrogen on the friction and wear behavior of a wide range of polymer materials. Thereby, the tribological performance of filled und unfilled polymers from different suppliers were compared at room temperature in air and hydrogen gas (H2) as well as in liquid hydrogen at -235°C (LH2). T2 - 23rd International Conference on Wear of Materials CY - Online meeting DA - 26.04.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-52651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Mack, D. E. A1 - Laquai, René A1 - Kupsch, Andreas A1 - Helle, O. A1 - Sebold, D. A1 - Vaßen, R. A1 - Bruno, Giovanni T1 - Charakterisierung der Porositäts- und Rissdichteentwicklung in Wärmedämmschichten von Gasturbinenschaufeln mittels Synchrotron Refraktions Radiographie N2 - Die Degradation von Wärmedämmschichten(thermal barrier coatings - TBCs) in Gasturbinen durch glasartige Calcium-Magnesium-Aluminiumsilikat (CMAS)Ablagerungen aus verschiedenen Quellen istseit vielen Jahren ein anhaltendes Problem. In dieser Studie wurde mit Hilfe derSynchrotron-Röntgen-Refraktions-Radiographie (SXRR), und vergleichend mit der Elektronenmikroskopie, das Eindringen von CMAS in die poröse Struktur von atmosphärisch plasmagespritzten (APS)TBCs sowie die Bildung und das Wachstum von Rissen unter thermisch zyklischer Belastung untersucht. Die Ergebnisse deuten darauf hin, dass die Infiltration sowie deren Kinetik im Brenner-Teststand wesentlich vom Benetzungsverhalten des CMAS beeinflusst werden. Trotz desoffensichtlichen Angriffs von CMAS auf die Korngrenzen hat die Wechselwirkung von Yttriumdioxid-stabilisiertem Zirkoniumdioxid (YSZ) mit intrudiertem CMAS keinen unmittelbaren Einfluss auf die Struktur und Dichte der innen Oberflächen(Risse, Poren). In einem späteren Stadium wird die Bildung von Rissen senkrecht zur äußeren Oberfläche in einer breiteren Zone der TBC-Schicht beobachtet. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Thermal barrier coatings KW - TBC KW - SXRR - Synchrotron X-ray Refraction Radiography KW - CMAS - Calcium-Magnesium-Aluminiumsilikat PY - 2021 UR - https://jahrestagung.dgzfp.de/Programm#P32 AN - OPUS4-52665 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek A1 - Mirabella, Francesca A1 - Wasmuth, Karsten A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Bennet, Francesca A1 - Krüger, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Influence of the pulse repetition rate on the chemical and morphological properties of laser generated surface structures N2 - Inter-pulse accumulation of heat could affect the chemical and morphological properties of the laser processed material surface. Hence, the laser pulse repetition rate may restrict the processing parameters for specific laser-induced surface structures. In this study, the evolution of various types of laser-induced micro- and nanostructures at various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz) are studied for common metals/alloys (e.g. steel or titanium alloy) irradiated by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment. The processed surfaces were characterized by optical and scanning electron microscopy (OM, SEM), energy dispersive X-ray spectroscopy (EDX) as well as time of flight secondary ion mass spectrometry (TOF-SIMS). The results show that not only the surface morphology could change at different laser pulse repetition rates and comparable laser fluence levels and effective number of pulses, but also the surface chemistry is altered. Consequences for medical applications are outlined. T2 - European Materials Research Society Spring 2021 Meeting CY - Online meeting DA - 31.05.2021 KW - Laser-induced pariodic surface structures KW - LIPSS PY - 2021 AN - OPUS4-52778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fayet, G. A1 - Wehrstedt, Klaus-Dieter A1 - Knorr, Annett A1 - Rotureau, P. T1 - First models to predict thermal decomposition properties of possible self-reactive substances based on industrial datasets N2 - Self-reactive substances are unstable chemical substances which can easily decompose and may lead to explosion. For this reason, their thermal stability properties are required within regulatory frameworks related to chemicals in order to assess their hazardous properties. Due to the fast development and availability of computers, predictive approaches like QSPR models are increasingly used in the evaluation process of hazardous substances complementary to experiments. In that context, the HAZPRED project (2015-2018) aimed to develop QSPR models to predict physical hazards of substances to fill the lack of knowledge on these hazardous substances quickly. An experimental campaign, based on 50 samples provided by Industrial producers, was carried out on potential self-reactive substances, for which no QSPR model already existed. Their heats of decomposition were characterized using differential scanning calorimetry in homogeneous experimental conditions. QSPR models were derived using the GA-MLR method (using a genetic algorithm and multi-linear regressions) using molecular descriptors calculated by Dragon software based on both 3D molecular structures from density functional theory (DFT) optimizations, to access three-dimensional descriptors, and SMILES codes, favoring the access to simpler models, requiring no preliminary quantum chemical calculations. All models respected the OECD validation guidelines for regulatory acceptability of QSPR models. They were tested by internal and external validation tests and their applicability domains were defined and analyzed. If improved models should be expected with larger database (and a better ratio between size and chemical diversity), these first models already represent a screening tool capable to access early reactive hazards. T2 - 19th International Workshop on Quantitative Structure-Activity Relationships in Environmental and Health Sciences CY - Online meeting DA - 07.06.2021 KW - QSPR KW - Self-reactive substances KW - Thermal decomposition PY - 2021 AN - OPUS4-53178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Rabe, Torsten T1 - Limits of computer tomography aided characterization of different types of porous ceramic materials N2 - Ceramics with open porosity are attractive materials in many fields of applications covering medicine, catalysis, and filtration. Manifold technologies to produce porous ceramics are available, e.g. foaming and replica processes, resulting in various microstructures. Development and manufacturing of new materials is accelerating, while crucial characterization is becoming increasingly difficult and conventional measurements lack the desired speed. Computed tomography (CT) offers the possibility to three-dimensionally characterize entire samples with minimal sample preparation, while its main advantage is that it is non-destructive. Still, the assessment of quantitative results from CT measurements is not trivial. The poster presents CT characterizations of newly developed as well as commercially available openly porous ceramic samples. Properties such as porosity, permeability or pore characteristics were measured conventionally and compared to results calculated from CT-measurements using the commercial software VG StudioMax. The determined differences between measured and calculated values are presented and application areas as well as limits of the CT characterization are evaluated. T2 - Jahrestagung der Deutschen keramischen Gesellschaft 2021 CY - Online Meeting DA - 19.04.2021 KW - Ceramic KW - Porosity PY - 2021 AN - OPUS4-52724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Thiele, Dorothea A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on ultrashort laser processed surfaces N2 - Bacterial biofilms are multicellular communities adhering to surfaces and embedded in a self-produced extracellular matrix. Due to physiological adaptations and the protective biofilm matrix itself, biofilm cells show enhanced resistance towards antimicrobial treatment. In medical and industrial settings, biofilms on e.g. for implants or for surfaces in food-processing industry can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. As extensive usage of antibiotics and biocides can lead to the emergence of resistances, various strategies are currently developed, tested and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area ultrashort laser scan processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials, i.e. titanium-alloy, steel, and polymer. The processed surfaces were characterized by optical and scanning electron microscopy and subjected to bacterial colonization studies with Escherichia coli test strains. For each material, biofilm results of the fs-laser treated surfaces are compared to that obtained on polished (non-irradiated) surfaces as a reference. Depending on the investigated surfaces, different bacterial adhesion patterns were found, suggesting an influence of geometrical size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself. T2 - European Materials Research Society Spring Meeting 2021 CY - Online Meeting DA - 31.05.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Ultrashort laser processing KW - Laser-induced periodic surface structures (LIPSS) PY - 2021 UR - https://www.european-mrs.com/laser-material-processing-fundamental-interactions-innovative-applications-emrs AN - OPUS4-52765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Schob, D. A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Sagradov, I. A1 - Roszak, R. A1 - Sparr, H. A1 - Franke, R. A1 - Ziegenhorn, M. A1 - Bruno, Giovanni T1 - Bestimmung der Mikrostruktur und Simulation des Schädigungsverhaltens von lasergesintertem Polyamid 12 unter quasistatischer Zugbelastung N2 - Um das Material- und Schädigungsverhalten von additiv gefertigtem Polyamid 12 (PA12) unter quasistatischer Belastung zu charakterisieren, wurden mechanische Tests und Röntgenverfahren zur Bestimmung der Mikrostruktur eingesetzt. Die Proben wurden nach dem Prinzip des Selektiven Lasersinterns (SLS) hergestellt. Unter quasistatischer Belastung mit Haltezeiten ergab sich ein visko¬plastisches Materialverhalten. Im Zugversuch wurde eine maximale Zugfestigkeit von 40.6 MPa und eine Bruchdehnung von 7.4% beobachtet. Mittels Röntgenrefraktion wurde eine Erhöhung von inneren Oberflächen beobachtet, die senkrecht zur Zugrichtung orientiert sind. Die Analyse der Gesamtporosität aus Computertomographie-Messungen ergab keine Änderung infolge der Zugbelastung. Jedoch wurde eine bimodale Porengrößenverteilung und eine steigende Sphärizität festgestellt. Das Materialverhalten wurde mit dem Chaboche-Modell simuliert und ergab eine sehr gute Übereinstimmung mit den experimentellen Ergebnissen. Allerdings gestattet dieses Modell nicht, das Schädigungsverhalten abzubilden. Daher wurde zur Simulation des Schädigungsverhaltens das Modell gemäß dem Ansatz von Gurson, Tvergaard und Needleman unter Berücksichtigung der mikrostrukturellen Parameter erweitert. Der Schwerpunkt des Beitrags liegt auf den Röntgenverfahren zur experimentellen Bestimmung der Mikrostruktur. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Fertigung (AM) KW - Polyamid 12 KW - Röntgenrefraktion KW - Computertomographie KW - Numerische Simulation PY - 2021 UR - https://jahrestagung.dgzfp.de/Programm#P16 AN - OPUS4-52681 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübler, Daniela A1 - Höhne, Patrick A1 - Gradt, Thomas T1 - Influence of TiC content on the tribological behavior of NbC-Ni-TiC cermets N2 - Increasing demand for alternatives to tungsten carbide (WC) cemented carbides as cutting tools, due to the health risks of their wear products WO3 and Co3O4. Niobium carbide (NbC) has a high potential, due to its high wear resitance, high hot hardness and melting point (3520°C), and low solubility in iron alloys. T2 - 23rd International Conference on Wear of Materials CY - Online meeting DA - 26.04.2021 KW - Niobium carbide (NbC) KW - Cermets KW - Tribological behavior PY - 2021 AN - OPUS4-52560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Tipping the Energy Scales to Control Mechanochemical Polymorphism N2 - Control of ball milling conversions is required before the full potential of mechanochemical processing can be realized. It is well known that many parameters affect the outcome of mechanochemical polymorphism, but the energy of ball milling itself is often overlooked. We show here how this parameter alone can exert a significant influence on the polymorphic outcome of ball mill grinding by allowing the selective isolation of two polymorphic forms in their pure form under the same grinding conditions. Furthermore, we show how apparent mechanochemical equilibria can be deceptive. Our results clearly demonstrate the need for careful design and interpretation of ball milling experiments beyond current thinking. T2 - SALSA make and measure CY - Online meeting DA - 16.09.2021 KW - Mechanochemistry KW - Energy KW - Polymorph KW - Cocrystal PY - 2021 AN - OPUS4-53293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Madia, Mauro T1 - Effect of heat treatment on the microstructure, residual stress state and fatigue properties of PBF-LB/M AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBF-LB/M) techniques allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB/M induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution before and after post-process heat treatments (HT). T2 - Alloys for Additive Manufacturing Symposium 2022 (AAMS22) CY - Munich, Germany DA - 12.09.2022 KW - Neutron diffraction KW - X-ray diffraction KW - Crack propagation PY - 2022 AN - OPUS4-55871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron X-Ray Refraction detects microstructure and porosity evolution during in-situ heat treatments N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the microstructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). In this study, SXRR has been combined with in-situ heat treatment to monitor the porosity evolution as a function of temperature. It is shown that SXRR is a robust and straightforward method for time-resolved (3-5 min required per scan) evaluation of thermally induced microstructural changes over macroscopically relevant volumes. T2 - SNI2022, German conference for research with synchrotron radiation, neutrons and ion beams at large facilities CY - Berlin, Germany DA - 05.09.2022 KW - Synchrotron X-Ray Refraction KW - In situ heating KW - AlSi10Mg KW - Laser powder bed fusion KW - Thermally induced porosity PY - 2022 AN - OPUS4-55778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron X-Ray Refraction detects microstructure and porosity evolution during in-situ heat treatments N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the microstructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). In this study, SXRR has been combined with in-situ heat treatment to monitor the porosity evolution as a function of temperature. This technique is a robust and straightforward method for time-resolved (3-5 min required per scan) evaluation of thermally induced microstructural changes over macroscopically relevant volumes. T2 - AAM2022, Alloys for Additive Manufacturing Symposium CY - Munich, Germany DA - 12.09.2022 KW - Synchrotron X-Ray Refraction KW - In situ heating KW - AlSi10Mg KW - Laser powder bed fusion KW - Thermally induced porosity PY - 2022 AN - OPUS4-55779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Kochovski, Z. A1 - Scoppola, E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Crystallization study of transition metal phosphates: A novel example for non-classical crystallization theory N2 - Industrial and agricultural waste streams (waste waters, sludges, tailings etc.) which contain high concentrations of NH4+, PO43- and transition metals are environmentally harmful and toxic pollutants . Typically, separate pathways have been considered to extract hazardous and transition metals or phosphate as critical raw materials, independently from each other. Here, we report the synthesis routes for transition metal phosphate (TMP) compounds (M3(PO4)2∙8H2O, NH4MPO4∙6H2O, M = Ni2+, Co2+, M-struvite and M-phosphate octahydrate), which allow for P, ammonia and metal co-precipitation. The precipitation of these compounds from industrial and agricultural waste waters could be a promising P-recovery route. Through adjusting the reaction conditions, the stability, crystallite size and morphology of the as-obtained TMP could be controlled. Detailed investigations of the precipitation process using ex- and in-situ techniques provided new insights into their non-classical crystallization mechanism/crystal engineering of these materials. These TMPs involve transitional colloidal nanophases which subsequently aggregate and condense to final crystals after extended reaction times. However, the reaction kinetics of the formation of a final crystalline product vary significantly depending on the metal cation(s) involved in the precipitation process. The occurring amorphous nanophases seem to majorly influence the outcome of crystallization. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P)-ratios, whereas Co tends to form Co-struvite and/or Co-phosphate octahydrate depending on the (M/P)-ratio. The observed various degree of stability could be linked to the octahedral metal coordination environment. The achieved level of control over the precipitates, is highly desirable for 3d- and P-recovery methods. Under this paradigm, the crystals can be potentially upcycled as precursor materials for (electro)catalytical applications 4. T2 - GeoMin Köln Konferenz 2022 CY - Cologne, Germany DA - 11.09.2022 KW - Non-classical crystallization theory KW - Amorphous phases KW - Transition metal KW - Phosphates KW - Diffraction PY - 2022 UR - https://www.geominkoeln2022.de/programme.html AN - OPUS4-55874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas T1 - Confinement induced relaxations and phase behavior of a nanoconfined ionic liquid crystal N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing phase transition behaviors and relaxation dynamics. Here in, we investigate the molecular dynamics and electrical conductivity of a linear shaped guanidinium based ILC confined in self-ordered nano porous alumina oxide membranes of pore size ranging from 180nm down to 25nm by employing broadband dielectric spectroscopy (BDS) and calorimetry. Calorimetric investigation reveals a complete suppression of the columnar – isotropic transition, while the plastic crystalline – columnar transition temperature decreases with inverse pore size and deviates from the Gibbs – Thomson equation. For the bulk case, BDS detects two relaxation modes in the crystalline phase, the  relaxation and the α1 relaxation, and two relaxation modes in the columnar phase, the α2 and α3 relaxation. For the confined case, all relaxation modes slow down compared to the bulk. However, for the least pore size (25 nm), the α2 relaxation is absent. We discuss the possible molecular origins of the different relaxation modes observed. For the bulk ILC, a clear jump of 4 orders of magnitude in the absolute values of DC conductivity occurs at the transition from the plastic crystalline to hexagonal columnar phase, for the confined ILC, this transition is smooth. DC conductivity is reduced for the confined case, except for the 25nm, where the values is similar to the bulk. T2 - 11th IDS conference 2022 CY - San Sebastian, Spain DA - 03.09.2022 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2022 AN - OPUS4-55879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Evolution of mesoporous frameworks from precipitated struvite-structured metal phosphate materialsls N2 - Mesoporous transition metal phosphates (TMPs) have attracted major interest due to their high (electro-)catalytic activity suitable for H2 generation, supercapacitors or batteries. Typically, mesoporous materials are synthesized via a template-based route. This way is in the case of TMP because the surfactants used are difficult to remove due to the sensitivity of the mesoporous framework. We present a template-free method including the formation of a precursor phase called M-struvite (NH4MPO4•6H2O, M = Mg2+, Ni2+, Co2+, Ni2+xCo2+1-x) to synthesize mesoporous and amorphous metal phosphates. This method relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneous mesoporous phase associated with the degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the coordination metal coordination environment was followed with diffraction and spectroscopy based in-situ and ex-situ methods. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions between the chemical systems. In a complex amorphous structure, thermal decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes for phosphate materials with a spherical to channel-like pore geometry (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). In addition to this low-cost, environmentally friendly and simple synthesis, M-struvites could grow as a recycling product from industrial and agricultural wastewaters. These waste products could be upcycled through a simple thermal treatment for further applications. T2 - SNI 2022 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities CY - Berlin, Germany DA - 05.07.2022 KW - Struvite KW - Transition metal KW - Phosphate KW - Amorphous phases KW - Mesoporosity PY - 2022 AN - OPUS4-55911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Güttler, Arne A1 - Richter, Maria A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - New Reference Materials for the Quantification and Standardization of Fluorescence-based Measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in the life and material sciences due to their high sensitivity and non-destructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength-, polarization-, and time-dependent instrument specific effect and the compound-specific photoluminescence quantum yield. The former hamper the comparability of fluorescence measurements, while the relative determination of the latter requires suitable quantum yield standards with well-known photoluminescence quantum yields (QY). For the simple correction of instrument specific effects in the wavelength region of 300 nm to 950 nm, the set of the five certified spectral fluorescence standards BAM-F001 – BAM-F005, has been extended to the NIR range by including two new fluorescence standards currently under certification. For the reliable and accurate determination of QY which is the key performance parameter for the comparison of different luminophores, we certified a set of 12 quantum yield standards, which absorb and emit in the wavelength range from 300 nm to 1000 nm. T2 - Methods and Applications in Fluorescence CY - Gothenburg, Sweden DA - 11.09.2022 KW - Luminescence KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Certified reference material KW - Standard PY - 2022 AN - OPUS4-55914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Evolution of mesoporous frameworks from precipitated struvite-structured metal phosphate materials N2 - Mesoporous transition metal phosphates (TMPs) have attracted major interest due to their high (electro-)catalytic activity suitable for H2 generation, supercapacitors or batteries. Typically, mesoporous materials are synthesized via a template-based route. This way is in the case of TMP because the surfactants used are difficult to remove due to the sensitivity of the mesoporous framework. We present a template-free method including the formation of a precursor phase called M-struvite (NH4MPO4•6H2O, M = Mg2+, Ni2+, Co2+, Ni2+xCo2+1-x) to synthesize mesoporous and amorphous metal phosphates. This method relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneous mesoporous phase associated with the degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the coordination metal coordination environment was followed with diffraction and spectroscopy based in-situ and ex-situ methods. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions between the chemical systems. In a complex amorphous structure, thermal decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes for phosphate materials with a spherical to channel-like pore geometry (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). In addition to this low-cost, environmentally friendly and simple synthesis, M-struvites could grow as a recycling product from industrial and agricultural wastewaters. These waste products could be upcycled through a simple thermal treatment for further applications. T2 - ECCG7, European Conference on Crystal Growth CY - Paris, France DA - 25.07.2022 KW - Transition metals KW - Phosphates KW - Struvite KW - Amorphous phases KW - Mesoporosity PY - 2022 AN - OPUS4-55491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Pellegrino, Francesco A1 - Maurino, V. T1 - Morphological Characterization and Chemical Identification of TiO2 Nanoparticles Doped with Ultrafine Metal Particles for Enhanced Photocatalytical Activity N2 - Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy (SEM) coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, Au, Rh, Pd) and metal concentrations are discussed. T2 - Microscopy and Microanalysis 2022 CY - Portland, OR, USA DA - 31.07.2022 KW - Nanoparticles KW - Me-TiO2 KW - Photocatalysis KW - Morpho-chemical characterization KW - Shape KW - SEM/EDS PY - 2022 AN - OPUS4-55541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -