TY - CONF A1 - Thiede, Tobias A1 - Farahbod, L. A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - In-situ compression CT on additively manufactured IN 625 lattice structures N2 - The layer-by-layer Additive Manufacturing (AM) by means of Selective Laser Melting (SLM) offers many prospects regarding the design of a part used in aeroplane components and gas turbines. However, structural deviations from the nominal morphology are unavoidable. The cooling of the finished part leads to shrinkage and a high surface roughness is induced by attached powder particles affecting the part volume too. The integrity and load-bearing capacity of a SLM produced lattice structure (see Fig.1) has been investigated by means of in-situ X-ray computed tomography during compression. The lattice structure was compressed by 10 % in height with an applied maximum force of 5 kN. Additionally, a single strut has been investigated ex-situ as a component of the lattice structure. With the higher resolution achieved on the single strut, the pore distribution (size and location) as well as the surface roughness were assessed. One of the main results coming from the in-situ analysis was that the nodes were identified as the weakest points in the lattice structure. T2 - iCT 2018 CY - Wels, Austria DA - 06.02.2018 KW - Additive manufacturing KW - Selective laser melting KW - Computed tomography KW - Lattice structure KW - In-situ compression CT KW - IN 625 PY - 2018 AN - OPUS4-44516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda A1 - Sentker, K. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Collective Orientational Order and Phase Behavior of a Discotic Liquid Crystal under Confinement N2 - Discotic liquid crystals (DLCs) are a promising class of soft matter for electronic applications. This is due to their ability to self-organize into columns in a hexagonal columnar mesophase, driven by the overlapping of the π orbitals of their aromatic cores. This leads to a high charge-carrier mobility along the column axis. Previous studies on DLCs showed that their properties, such as phase transition temperatures and enthalpies, are susceptible to nanoconfinement. In this study, 2,3,6,7,10,11 hexakis[hexyloxy] triphenylene (HAT6) was confined into parallel aligned cylindrical nanopores of anodic aluminum oxide (AAO) membranes by melt infiltration. Furthermore, the pore surfaces of a series of membranes were chemically modified, resulting in a more hydrophobic pore surface than the unmodified ones. Collective orientational order and phase behavior of HAT6 confined into modified and unmodified nanopores of AAO were investigated by broadband dielectric spectroscopy and differential scanning calorimetry respectively. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Discotic Liquid Crystals PY - 2018 AN - OPUS4-44506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omara, Shereen A1 - Rehim, Mona A1 - Turky, Gamal A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Structure−property relationships of hyperbranched polyamine ester/Ka-DCA nanocomposites N2 - Hyperbranched polyamine ester (HPAE)/ kaolinite nanocomposites were papered via an ex situ (solution-based) method. The kaolinite has been modified by dodecylamine (DCA). SAXS measurements revealed that the Ka interlayer space increased from 0.71 to 3.6 nm-1. A partly exfoliated structure of the HPA/Ka-DCA nanocomposites was proved by SAXS and TEM. By a combination of BDS and SHS, the relaxation properties of the nanocomposites were investigated in dependence on frequency and temperature. The activation energies of γ-relaxation for the nanocomposites were lower than the values found for the pure HPAE. The segmental dynamics (α- relaxation) was found to be screened out by the conductivity contribution. While it is retrieved by SHS employing AC-chip calorimetry. A systematic change of the dynamic glass transition estimated by AC-chip calorimetry was observed, which is in agreement with a behavior expected for a confined sample. The confinement effect of the Ka-DCA nanofillers reduces the glass transition temperature Tg and enhances, meanwhile, the electrical conductivity of the polymer. By comparing the temperature dependence of the dynamic glass transition measured with SHS and that of the dc conductivity measured by dielectric spectroscopy, a decoupling in their temperature dependencies was found. With increasing concentration of the nanofiller, which results in a stronger glass-formation behavior, this decoupling becomes weaker. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Nanocomposites PY - 2018 AN - OPUS4-44522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromi-um carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hard-ening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - 20. Werkstofftechnischen Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Heat treatment KW - Stainless steel KW - Corrosion resistance KW - EPR KW - Corrosion testing PY - 2018 AN - OPUS4-44553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kimani, Martha Wamaitha A1 - Zhang, Y. A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescent core/shell molecularly-imprinted nanoparticles for staining sialic acid (SA) residues on tumor cells N2 - Cancer is a leading cause of death worldwide, and its early detection and resultant treatment contributes significantly to patient recovery and survival. Detection is currently based on magnetic resonance imaging and computed tomography, methods that are expensive, while processing of the results is time consuming. There is a need for low-cost cancer-detection techniques that give conclusive results in the shortest time possible. Molecularly imprinted polymers (MIPs) targeting tumor markers on cancerous cells may provide a cheaper solution for cancer detection. Thin MIP layers immobilized on particle platforms are known to give faster response times and increased selectivity in comparison to bulk MIPs. It has been reported that a fluorescent monomer can be incorporated into the MIP layer, allowing for faster detection of the target group, thus significantly shortening the turn-around time for biopsies. Changes in sialylation patterns of cell surface glycoproteins indicate malignancy. Here, we present the development of MIPs that target sialic acid-terminated glycoproteins (SA MIPs), prepared as a thin layer on a silica nanoparticle platform. A fluorescent monomer is incorporated into the MIP layer, and upon binding of the target group to the specific binding pockets in the MIP, the fluorescence signal is enhanced. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are used for structural characterization. To validate the specificity, fluorescence changes of MIPs in the presence and absence of template are compared to their corresponding non-imprinted polymer particles (NIP). Initial binding experiments with tumor cells using fluorescence microscopy demonstrate that the presented technique shows promise as a cheaper alternative to current detection methods, while allowing for relatively shorter analysis of biopsy results. T2 - MIP 2018 CY - Hebrew University Jerusalem, Belgium House, Israel DA - 24.07.2018 KW - Sialic acid KW - MIPs KW - Fluorescence PY - 2018 AN - OPUS4-45419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Garces, Gerardo A1 - Requena, Guillermo A1 - Sevostianov, Igor A1 - Bruno, Giovanni T1 - Stress-induced damage evolution in aluminum matrix composites N2 - Two metal matrix composites, both consisting of a near-eutectic cast AlSi12CuMgNi alloy, one reinforced with 15%vol. Al2O3 short fibers and the other with 7%vol. Al2O3 short fibers + 15%vol. SiC particles were studied. Distribution, orientation, and volume fraction of the different phases was determined by means of synchrotron computed tomography. The load partitioning between phases was investigated by in-situ neutron diffraction compression tests. The internal damage of the eutectic Si phase and Al2O3 fibers after ex-situ compression tests was directly observed in CT reconstructed volumes. Significant debonding between Al-matrix and SiC particles was found. Those observations allowed rationalizing the load transfer among the constituent phases of two different composites. Finally, based on the Maxwell scheme, a micro-mechanical model was utilized for the composite with one and two ceramic reinforcements. The model rationalizes the experimental data, and predicts the evolution of principal stresses in each phase. T2 - The 4th International Congress on 3D Material Science 2018 CY - Elsinore, Denmark DA - 10.06.2018 KW - Computed Tomography KW - Aluminium KW - Metal Matrix Composite KW - Load Partition PY - 2018 AN - OPUS4-45397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manolov, Manol A1 - Subaric-Leitis, Andreas A1 - Bartholmai, Matthias T1 - Bestimmung der Maschinennachgiebigkeit beim Einsatz sphärischer Indenter in der Instrumentierten Eindringprüfung N2 - Der Einfluss der Maschinennachgiebigkeit einschließlich der elastischen Verformung des Indenters ist bei der Bestimmung der entsprechenden Werkstoffcharakteristiken insbesondere beim Einsatz von sphärischen Indentern unter höheren Prüfkräften von Bedeutung. Mit zunehmender Prüfkraft wird die Maschinennachgiebigkeit kraftabhängig und kann im idealen Fall als Funktion von Prüfkraft und gemessener Eindringtiefe für vorgegebene Indenterradien dargestellt werden. Angegeben ist ein vereinfachtes Verfahren zur Bestimmung der Maschinennachgiebigkeit. T2 - Sensoren und Messsysteme CY - Nürnberg, Germany DA - 26.06.2018 KW - Maschinennachgiebigkeit KW - Instrumentierte Eindringprüfung KW - Sphärische Indenter KW - Vereinfachtes Verfahren KW - Kraftabhängige Funktion KW - Härtevergleichsplatten KW - Eindringmodul PY - 2018 AN - OPUS4-45390 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Shinde, S. A1 - Alm, K. A1 - Sellegren, B. A1 - Gjörloff-Wingren, A. T1 - Macrophage-uptake of sialic acid-targeted molecularly imprinted polymers (SA-MIPs) N2 - Sialic acid (SA) is a cell surface glycan, which has a decisive role in many cell activities including differentiation, proliferation, and the immune response. The amount of SA has been found to correlate with cancer, with an upregulation on more aggressive cancers. Therefore, there is a great interest in developing methods for detection of SA on cancer cells. We are screening SA on cancer cell lines by using fluorescent molecularly imprinted polymers, SA-MIPs. Macrophages, which evolve from mono-cytes, are well known for their extraordinary ability to phagocytose foreign objects. This could lead to the hypothesis that the SA-MIPs can be recognized by macrophages as foreign object; thus leading to internalization and potentially degradation. We have demonstrated that SA-MIPs can be detected after incubation with the RAW macrophage cells, with increasing fluorescence over time. The microscopy analysis shows that the RAW cells ingest the SA-MIP particles. This information is important when planning to use SA-MIPs in future in vivo applications. T2 - 1st National Meeting of the Swedish Chemical Society CY - Lund University, Sweden DA - 17.06.2018 KW - Sialic acid KW - MIPs KW - Macrophages PY - 2018 AN - OPUS4-45421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Shinde, S. A1 - Alm, K. A1 - Sellegren, B. A1 - Gjörloff-Wingren, A. T1 - Macrophage-uptake of sialic acid-targeted molecularly imprinted polymers (SA-MIPs) N2 - Sialic acid (SA) is a cell surface glycan, which has a strong role in many cell activities including differentiation, proliferation, and the immune response. The amount of SA has been found to be correlated with cancer, with an upregulation on more aggressive cancers. Therefore, there is great interest in developing methods for detection of SA on cancer cells. We are screening SA on cancer cell lines by using fluorescent molecularly imprinted polymers, SA-MIPs.Macrophages, which evolve from mono-cytes, are well known for their extraordinary ability to phagocytose foreign objects. This could lead to the hypothesis that the SA-MIPs can be recognized by macrophages as foreign object; thus leading to internalization and potential degradation. We have discovered that SA-MIPs can be detected after incubation with the RAW macrophage cells, with increasing fluorescence over time. The microscopy analysis shows that the RAW cells ingest the SA-MIP particles. This information is important when planning to use SA-MIPs in future in vivo applications. T2 - The 69th Annual Conference of the Nordic Microscopy Society, 2018 CY - Lyngby, Denmark DA - 25.06.2018 KW - Sialic acid KW - MIPs KW - Macrophages PY - 2018 AN - OPUS4-45422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prager, Jens A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Boller, C. T1 - Efficient modelling of guided ultrasonic waves using the Scaled Boundary FEM towards SHM of composite pressure vessels N2 - The Scaled Boundary Finite Element Method (SBFEM) is a semi-analytical method that shows promising results in modelling of guided ultrasonic waves. Efficiency and low computational cost of the method are achieved by a discretisation of the boundary of a computational domain only, whereas for the domain itself the analytical solution is used. By means of the SBFEM different types of defects, e.g. cracks, pores, delamination, corrosion, integrated into a structure consisting of anisotropic and isotropic materials can be modelled. In this contribution, the SBFEM is used to analyse the propagation of guided waves in a structure consisting of an isotropic metal bonded to anisotropic carbon fibre reinforced material. The method allows appropriate wave types (modes) to be identified and to analyse their interaction with different defects. Results obtained are used to develop a structural health monitoring system for composite pressure vessels used in automotive and aerospace industries. T2 - 9th European Workshop on Structural Health Monitoring (EWSHM) CY - Manchester, UK DA - 10.07.2018 KW - Structural Health Monitoring KW - Pressure tanks KW - Hydrogen storage KW - Finite Element Modelling KW - Composites PY - 2018 AN - OPUS4-45486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raedel, Martina A1 - Bücker, Michael A1 - Feldmann, Ines A1 - Reimann, Mandy T1 - Mobile anodization for the conservation of damaged architectural aluminium elements N2 - Initial situation: Aluminum is an often-used building material in modern architecture, not only for construction but as well for facades and decorative elements. In the 1950th and 1960th, after World War II, many buildings in Germany were constructed with aluminum or contain elements of colored anodized aluminum. In the last years a larger number of these buildings are increasingly in the sight of conservation works including the aluminum parts such as window frames or facade coverings. Damaged Aluminum Surfaces: Common damages are a change of color or gloss changes through weathering processes, drill holes or marks due to later modifications, scratches in the anodized layer due to extensive wear e.g. at handrails or door handles. To repair damaged aluminum surfaces, there are usually two options: smaller damaged areas are repaired by using a touch-up pen. In case of larger damages, the complete re-anodization is necessary. This includes to de-anodize the surface with cleaning and grinding the whole aluminum object. Both possibilities are disadvantageous for the objects. The touch-up pen often does not match the color of the original surface together with an insufficient corrosion protection for outdoors. While the newly anodized surface differs in color and gloss from the originally applied color. Research Approach: The whole procedure contrasts with the principal approach in conservation which aims to intervene as less as possible, in case of the conservation of an object. To fulfill this approach in a more appropriate way the research project focuses on a mobile and partial application for colored, anodized aluminum parts. To anodize aluminum the application of an electrolyte onto the surface together with sufficient voltage and current is necessary. Generally diluted sulfuric acid is used as electrolyte. Different possibilities are examined to enable the mobile application of the electrolyte, e. g. the application by producing a gel matrix or like in electroplating by pen or brush wrapped with a fleece fabric. Experimental part: First experiments are conducted to examine the structure of the anodized layer in relation with proper cleaning, anodization time with applied voltage and current and the coloring process. The aim was to reduce the preparation procedure and the anodization time as much as possible to facilitate the mobile application. Examinations with Keyence microscope, Eddy current testing and REM are performed to characterize the layers. The results are shown in table 1. A clear connection between proper cleaning, anodization time, voltage and amperage and the achieved thickness of the anodized layer is significant. Cracks in the layer show that raising the voltage and amperage results in thicker layers but as well in a crumbled and less stable anodized surface. Gel preparation: In addition to the anodization process with a liquid e.g. sulfuric acid a gel application is tested to prevent the electrolyte from rinsing down during the mobile application. For this purpose, several gel-forming agents are tested together with their stability in acid systems. It was observed, that the consistency of the gels varies dependent of the time. Conductivity: The conductivity of sulfuric acid combined with different gel-systems was measured and compared in order to predict the possible growth of layers during anodic oxidation process. Further steps: Determination and optimization of application parameters like voltage, amperage and anodization-time to build up a preferably stable and sufficient thick anodized layer. Examination of gel preparation to guarantee a stable product, enforcing with textile tape for easy application. T2 - Architectural Aluminum in the 21st Century CY - Boston, MA, USA DA - 24.03.2018 KW - Aluminum KW - Anodization KW - Historic buildings KW - Mobile application PY - 2018 AN - OPUS4-45018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spitzer, Stefan A1 - Recknagel, Christoph A1 - Said, Samir A1 - Ziegler, Fred T1 - BAM-Monitoringkompetenz am Beispiel des Projekts INFUSE-SensoJoint N2 - Datenmanagement der realen Beanspruchungen von Betonautobahnen von der definierten Datenerfassung über Datenverwaltung, Datenübertragung bis zur Datenauswertung T2 - Workshop Digitaler Zwilling CY - BAM, Berlin, Germany DA - 04.06.2018 KW - Bitumen KW - Betonautobahn KW - Monitoring KW - Innovative Messtechnik PY - 2018 AN - OPUS4-45020 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lange, Thorid A1 - Hidde, Gundula A1 - Beck, Uwe A1 - Naumann, F. A1 - Kärkkänen, I. A1 - Gargouri, H. T1 - HARFE: Haftfestigkeit Reproduzierbarkeit Festigkeit „Nanoskalige Haftvermittler zur Erhöhung der Haft- bzw. Klebfestigkeit unter Verwendung von ALD-Hybridprozessen“ N2 - Das Poster „HARFE: Haftfestigkeit Reproduzierbarkeit Festigkeit“ widmet sich den nanoskaligen Haftvermittlern zur Erhöhung der Haft- bzw. Klebfestigkeit unter Verwendung von ALD-Hybridprozessen. T2 - Netzwerksymposium “Schützen und Veredeln von Oberflächen”, Wildau CY - TH Wildau, Germany DA - 01.03.2018 KW - Verbundfestigkeit KW - Oberflächenenergie KW - ALD-Beschichtung PY - 2018 AN - OPUS4-44399 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - Metrology for additively manufactured medical implants N2 - Additive manufacturing (AM) offers an effective solution to the medical sector. It enables the production, on demand, of customised implants which match the patient’s anatomy, with grafts that promote bone growth, as well as surgical guides that help the surgeons. The objective of this project is to provide a comprehensive basis to enable the safe use of medical AM products with traceable and reliable dimensionalmeasurements. This will guarantee the reliability of medical AM products to notified bodies and facilitate acceptance of AM in the medical sector for a better quality of life. T2 - 8th iCT 2018 conference CY - Wels, Austria DA - 06.02.2018 KW - Implants KW - Metrology KW - Additive manufacturing PY - 2018 AN - OPUS4-44400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawek, Marcel A1 - Madkour, Sherif A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of Irreversibly Adsorbed Layers in Thin Polymer Films N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is expected to form. These adsorbed layers have shown great potential for technological applications. However, their growth kinetics and molecular dynamics are still not fully understood. This is partially due to the hard accessibility of these layers in thin films. Here, the irreversibly adsorbed layers of homopolymer thin films are revealed by solvent-leaching experiments. First, the growth kinetics of these layers is investigated as a function of annealing times and original film thickness. The thickness, topography and quality of the adsorbed layer is controlled with Atomic Force Microscopy (AFM). Secondly, the molecular mobility of the adsorbed layer is investigated with Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor is employed to measure the adsorbed layers with a free surface layer. The results are quantitatively compared and discussed with respect to recently published work. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films KW - Dielectric spectroscopy PY - 2018 AN - OPUS4-44489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüth, Peter A1 - Brandes, E. A1 - Frost, K. A1 - Kurth, Lutz A1 - Schmidt, Martin A1 - Michael-Schulz, Heike A1 - Uhlig, S. T1 - CEQAT-DGHS Ringversuchsprogramm für die Chemikaliensicherheit -Methodenvalidierung N2 - Bei der Bewertung der Verlässlichkeit der im Labor gewonnenen Prüfergebnisse spielen Ringversuche eine entscheidende Rolle. Die Bundesanstalt für Materialforschung und –prüfung (BAM) unterstützt deshalb den weiteren Ausbau des Ringversuchsprogramms des im Jahr 2007 gegründeten Kompetenzzentrums zur Qualitätssicherung für Prüfungen von Gefahrgütern und Gefahrstoffen auf physikalische Gefahren (Centre for quality assurance for testing of dangerous goods and hazardous substances, CEQAT-DGHS). Bei allen bisher untersuchten Prüfmethoden besteht ein Verbesserungsbedarf. Die RV müssen daher zunächst auf die Methodenentwicklung, -verbesserung und -validierung und auf die Bestimmung der Messunsicherheit der jeweiligen Prüfmethode abzielen und nicht auf Leistungstests. T2 - Behörden-Erfahungsaustausch CY - Berlin, Germany DA - 4. Juni 2018 KW - Prüfmethode KW - Methodenvalidierung KW - Gefahrgut KW - Gefahrstoff KW - Qualitätssicherung PY - 2018 AN - OPUS4-45297 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Failure of PE-HD induced by liquid media (ESC) N2 - As the well-known damage mechanisms slow crack growth (SCG) and environmental stress cracking (ESC) are the major causes for possible failure of polyolefin-based materials, especially for PE-HD, they are highly relevant and need to be considered thoroughly. Furthermore, due to slight but perceptible differences in damaging effect, a differentiation between SCG and ESC is expedient. SCG appears in “inert” or “neutral” media without a decisive influence of the surrounding medium whereas ESC occurs in “active” media, which influence the failure behavior and time to failure crucially. To characterize the inherent resistance of the material against those damage mechanisms, the well-established Full-Notch Creep Test (FNCT) is used. In this study, the FNCT – usually applied according to ISO 16770 [3] using a few universal model liquid media and mainly for pipe materials – is extended by investigations with appropriate parameters of selected relevant PE-HD container materials also in real media, such as the topical fuels diesel and biodiesel. The investigations were performed using a novel FNCT-device with 12 individual sub-stations, each equipped with individual electronic stress and temperature control and continuous online monitoring of the specimen elongation. Especially, mechanical stress and temperature were varied systematically during FNCT and time to failure values, time-dependent elongation data as well as detailed fracture surface analysis by laser scanning microscopy (LSM) were combined for the first time (Fig. 1). Particularly, the fracture surface analysis provides a sound basis to characterize failure behavior, mainly regarding the balance between brittle crack propagation and ductile deformation. Therefore, fracture surface analysis is an essential tool for a decent assessment of SCG and ESC by FNCT measurements. T2 - 17th International Conference on Deformation, Yield and Fracture of Polymers (DYFP) CY - Kerkrade, The Netherlands DA - 25.03.2018 KW - Environmental stress cracking (ESC) KW - PE-HD KW - Full Notch Creep Test (FNCT) KW - Imaging techniques KW - Brittle / ductile fracture behavior KW - Crack propagation analysis PY - 2018 AN - OPUS4-44617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rachmatulin, Natalia A1 - Gardei, André A1 - von Werder, Julia A1 - Meng, Birgit A1 - Süßmuth, J. A1 - Gerdes, A. T1 - Funktionalisierung von Polymerfasern - ein Beitrag der Tensidchemie für dauerhafte zementgebundene Werkstoffe N2 - Im Gegensatz zur Druckfestigkeit weisen zementgebundene Werkstoffe i. a. nur geringe Zugfestigkeiten auf. Ein Weg, Zugfestigkeiten zementgebundener Werkstoffe zu erhöhen und Rissbildung aufgrund von Zugspannungen zu verringern, besteht in der Einarbeitung von Fasern, die diese Spannungen aufnehmen. Häufig eingesetzt werden Stahlfasern, obwohl synthetische Polymerfasern leichter und meist beständiger gegenüber chemischen Angriffen und Korrosion sind. Die Polymerfasern zeigen allerdings meist einen deutlich schwächeren Haftverbund, was an der hydrophoben Faseroberfläche liegt. Um nun eine Anbindung der Fasern an die mineralische Matrix zu erreichen, müssen die Faseroberflächen modifiziert werden, ohne dass die mechanischen Eigenschaften negativ beeinflusst werden. Eine Herausforderung besteht somit in einer Oberflächenmodifikation durch eine schonende Behandlung der Fasern zur Erzeugung von anbindungsfähigen Gruppen. Durch eine Behandlung von modifizierten Fasern mit geeigneten Polymerlösungen werden die Oberflächeneigenschaften verändert und erlauben eine Anbindung an die Zementsteinmatrix. Der Einsatz von Tensiden als grenzflächenaktive Verbindungen ermöglicht in diesem Zusammenhang eine Vermittlung zwischen Polymeroberflächen und mineralischen Werkstoffen. T2 - HighTechMatBau CY - Berlin, Germany DA - 31.01.2018 KW - Zementgebundene Baustoffe KW - Lichtmikroskopie KW - Röntgen-3D-Computertomographie KW - Einzelfaserdurchzugsversuch KW - Windkanal KW - Fasermodifikation KW - Oberflächenfunktionalisierung KW - Grenzflächenaktive Verbindung PY - 2018 AN - OPUS4-44652 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gardei, André A1 - Drabetzki, Philipp T1 - Probenpräparation für LIBS-Messungen - ein häufig unterschätztes Thema N2 - Die Probenpräparation ist ein Teil im Prozess der Baustoffuntersuchung und muss dementsprechend sorgfältig geplant werden. Die Probenpräparation ist letztendlich der Grundstein für alle folgenden Untersuchungen, somit wirken sich alle hier getroffenen Entscheidungen direkt auf die Qualität der Ergebnisse aus. T2 - Fachtagung Bauwerksdiagnose CY - Berlin, Germany DA - 15.02.2018 KW - Probenpräparation KW - LIBS PY - 2018 AN - OPUS4-44656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Rosu, D.-M. A1 - Beck, Uwe T1 - Calibration samples and the GUM-compliant determination of uncertainties in ellipsometry N2 - Ellipsometry is well known as a highly sensitive and reproducible surface analysis technique. However, in a context of metrological applications, the most important property of a measurement process is accuracy, relying on statistical precision, (reproducibility) and trueness (in an absolute sense versus a given standard). The latter is much more difficult to achieve. In this presentation, we discuss the possibility of establishing ellipsometry in a diverse metrological landscape by means of defining standard procedures and best practice methodologies for the measurement and for calibration purposes. The most important task of this approach is to determine the model-inherent uncertainty, originating from parameter coupling. We achieve this by means of sensitivity analysis of the parameters resulting from the fit process. We discuss the definition of reference materials by which accuracy can be made available for ellipsometry, passed along between ellipsometry laboratories and for other measurement techniques. The determination of uncertainty is presented in this work for a number of examples involving difficult analysis models employed for samples from different production environments. We present a standardization initiative with the goal to disseminate this work into an international standard alongside an inter-laboratory study comparing the results for complex samples gained by laboratories with different instrumentation. We also present the results gained within EURAMET projects focused on the metrology of materials with strong non-idealities used in photovoltaics and other energy technology. T2 - Workshop Ellipsometry 2018 CY - Chemnitz, Germany DA - 19.03.2018 KW - Ellipsometric metrology KW - Reference samples KW - Reference procedures KW - Standardization PY - 2018 AN - OPUS4-44674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -