TY - CONF A1 - Redfern, J. A1 - Stephan, Ina A1 - Verran, J. A1 - Askew, P. T1 - Control of humidity during simulation tests on the efficacy of antimicrobial surfaces N2 - The influence of rel. humidity on the drying of splashes on different surfaces is documented in order to investigate how Long humidity for microbiological growth is present. T2 - COST Action Clinical microbiology and infection (AMiCl) CY - Pori, Finland DA - 06.06.2017 KW - Moisture drying KW - Plastic KW - Humidity PY - 2017 AN - OPUS4-40790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Usmani, Shirin A1 - Schlishka, Joerg A1 - Klutzny, Kerstin A1 - de Laval, Yvonne A1 - Plarre, Rüdiger A1 - Krahl, Thoralf A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, Erhard T1 - Wood protection with nanoparticles: MgF2 and CaF2 N2 - Alkaline earth metal fluoride nanoparticles have been investigated for application in wood protection. Sols of MgF2 and CaF2 were synthesized and their efficacy was tested against fungi and termites (Rehmer 2016, Krahl et al. 2016). The sols were characterized by XRD and SEM. The wood specimens were vacuum impregnated with nanoparticles and then exposed to fungi and termites according to EU certified test conditions. Our results show that wood impregnated with metal fluoride nanoparticles significantly reduce cellulose hydrolysis by fungi and termites. The wood samples were exposed to brown-rot fungi; Coniophora puteana and Poria placenta. Between the two fungi, the overall mass lost due to fungal degradation was lower for treated (MgF2 and CaF2) wood samples exposed to Coniophora puteana. Thus, the metal fluoride nanoparticles impregnated in the wood samples were more efficient in reducing cellulose degradation from Coniophora puteana than from Poria placenta. However the mass loss in samples treated with MgF2 was similar to those treated with CaF2, irrespective of type of fungi. Therefore, it is likely that fungal degradation in treated samples was dependent on the biocidal action of fluorides rather than on the differences in chemical and physical properties of MgF2 and CaF2, respectively. Conversely, for termite exposure, wood samples treated with MgF2 had lower cellulose degradation compared to those treated with CaF2. A possible explanation for this difference in results could be fungi and termites use separate mechanisms for cellulose hydrolysis which will be further investigated. Future experiments include testing the leaching potential of MgF2 and CaF2 nanoparticles from wood. The results from the leaching experiment will test if metal fluoride nanoparticles can provide long-term and environmentally safe protection to wood. T2 - International Research Group (IRG48) Scientific Conference on Wood Protection CY - Ghent, Belgium DA - 04.06.2017 KW - Fluoride KW - Nanoparticles KW - Brown-rot fungi KW - Termites PY - 2017 AN - OPUS4-41019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Artemeva, Elena A1 - Ermilov, Eugeny A1 - Crasselt, Claudia A1 - Stroh, Julia A1 - Mota Gasso, Berta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Study of the hydration of superplasticizer-cement pastes with optical spectroscopy N2 - Chemical admixtures like superplasticizers or stabilizing agents are of ever increasing importance for modern concrete technology. Although such admixtures have meanwhile become common practice in many applications of concrete technology, the understanding of these highly complex systems is still limited and the relevant parameters, which predominantly control the interaction between the superplasticizer and the cement components, have not been identified yet. Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules. This encouraged us to assess the potential of these methods, and particularly reflectance and fluorescence measurements, for the study of the interactions that occur at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation. Special emphasis is dedicated to search for and identify differences between commonly used superplasticizers. Here, we focus on hydration effects using commercial comb shape polycarboxylate ethers (PCEs) with different charge densities, which are known to allow a very low water/cement ratio (w/c of 0.20 or less) while maintaining good workability. Based upon changes of the intensity of the reflectance and fluorescence signal and spectral effects of a dye, acting as optical reporter, a model for the interactions of dye, PCE molecules and cement nanoparticles in the very first phase of cement hydration is derived T2 - Gesellschaft Deutscher Chemiker-Analytische Chemie-Anakon 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Cement hydration KW - Optical spectroscopy KW - Superplasticizers PY - 2017 AN - OPUS4-39882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena A1 - Benemann, Sigrid A1 - Siebler, Daniel A1 - Sturm, Heinz T1 - PDMS-POS-capsules for prospective self-healing silicone rubber N2 - Capsules made of a polydimethylsiloxane (PDMS) core with a poly(organosiloxane) (POS) shell can be used as a new filler system for self-healing silicone rubber. Synthesis of these PDMS-POS capsules, as well as the characterization based on TGA, SEM and fluorescence spectroscopy is presented. T2 - 6th ICSHM 2017 CY - Friedrichshafen, Germany DA - 25.06.2017 KW - Self-healing KW - Capsules KW - PDMS PY - 2017 AN - OPUS4-40856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagel, Dorothee A1 - Sturm, Heinz T1 - Long range influence of boehmite nanoparticles on the nanomechanics of epoxy matrix used in carbon-fiber composites N2 - Boehmite nanoparticles (AlOOH) were recently found to improve properties such as crack resistance, shrinkage and compressive strength in epoxy composites. Concentration and surface modification of boehmite nanoparticles are key factors for abovementioned enhancements. To understand the underlying mechanisms, more detailed research of micro- and nanoscopic mechanical properties is required. The presented study aims to investigate the influence of concentration and surface modification of boehmite on the stiffness of the bulk epoxy by means of AFM-based approaches: Force-Distance curves (FDC) on the sub- microscale and Intermodulation AFM and amplitude-dependent force spectroscopy (ADFS) on the nanoscale. For this purpose, stiffness-maps of epoxy filled with boehmite, with and without surface modification (HAc-boehmite) were obtained by FDC. These measurements showed a slight increase in overall stiffness of composite with increasing the nanoparticle content. The stiffening effect was observed to be intensified with HAc-boehmite. Since the lateral resolution of FDC is not high enough to distinguish nanoparticles, this effect was assumed to be due to the inevitable inclusion of nanoparticles in the measurement. By using Intermodulation-AFM, yielding ADFS stiffness maps with the resolution of <10 nm, we were able to calculate the average stiffness of bulk epoxy without the interference of nanoparticles. It was expected that the stiffness of regions faraway from particles would be equal to neat epoxy. In contrast, the results showed a drastic increase in stiffness of epoxy with increasing boehmite concentration (0, 1, 2.5, and 15%) especially in case of introducing 15wt% HAc-boehmite. Another important observation was formation of a spatial structure with non-homogenous stiffness distribution in bulk epoxy with HAc-boehmite. The underlying mechanisms of described observations are not fully understood yet. One hypothesis is the local increase in crosslinking density which we aim to investigate in our further studies by combining Dynamic Mechanical Thermal Analysis (DMTA) and Intermodulation-AFM. T2 - Frontiers in Polymer Science CY - Seville, Spain DA - 17.05.2017 KW - AFM KW - Boehmite KW - Epoxy nanocomposite PY - 2017 AN - OPUS4-50688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Weise, Matthias A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.5% purity) were treated using three alternative methods, i.e., fs-laser processing in air, thermal heat treatment in an oven, or anodization in an electrochemical bath, all resulting in the formation of differently conditioned superficial oxide layers. The laser processing was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of several square-millimetres large surface areas covered homogeneously by these nanostructures. The thermal processing in the oven was done at two different temperatures, while the electrochemical anodization was performed at room temperature, aiming to generate different polymorphs of titanium oxide at similar oxide layer thickness. The irradiated surface regions were characterized by optical and scanning electron microscopy, and micro Raman spectroscopy. The tribological performance of the differently treated titanium surfaces was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in un-additivated paraffin oil and fully formulated engine oil as lubricants. The specific tribological performance of the differently treated surfaces is discussed on the basis of possible physical and chemical mechanisms. T2 - International Conference on Laser Ablation, COLA 2017 CY - Marseille, France DA - 03.09.2017 KW - Femtosecond laser KW - Oxidation KW - Laser-induced periodic surface strcutures, LIPSS KW - Friction KW - Wear PY - 2017 AN - OPUS4-42032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Spranger, Felix T1 - Localized laser dispersing of titanium-di-boride with pulsed fiber laser N2 - In this paper, titanium-di-boride is dispersed on a cold-working tool steel by use of a pulsed fiber laser with high beam quality to produce separated and elevated surface features. The potential to adjust the geometry as well as the mechanical properties of the produced structures in dependence on the process parameters (pulse power, pulse duration) is described by means of metallographic and topographical investigations. It can be ascertained that very hard (hardness > 1000 HV1) surface features of different shape (spots and short lines) can be produced. They are characterized by a fine-grained microstructure resulting from a rapid solidification and finely dispersed TiB2 particles. Finally, the paper proposes different applications for this structuring technique. T2 - ICALEO 2017 - International congress on applications of lasers & electro-optics CY - Atlanta, GA, USA DA - 22.10.2017 KW - Laser dispersing KW - Titanium-di-boride KW - Surface structuring KW - Laser implantation PY - 2017 AN - OPUS4-42867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Bücker, Michael A1 - Seeger, Stefan T1 - The effect of particle deposition and climate on glass degradation N2 - A number of environmental monitoring projects were performed on historic stained-glass windows in Germany. The quality of the protective glazing was assessed by recording environmental parameters in the interspace between the original and the protective glazing and on the inside of the original window. For this purpose, temperature, humidity and air velocity were measured. Particles were sampled with different methods and analysed by scanning electron microscopy combined with energy dispersive X-ray spectroscopy to determine their chemical composition. The effect of particles on model glass samples was investigated in climate chambers under accelerated weathering conditions. T2 - International Symposium on Glass Degradation in Atmospheric Conditions CY - C2RMF, Paris, France DA - 15.11.2017 KW - Particle measurement KW - Dust analysis KW - Climate chamber simulation KW - Protective glazing PY - 2017 AN - OPUS4-43171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - SiO2-containing organic coatings for geothermal application N2 - Geothermal brine is considered to be an aggressive environment as it contains various dissolved salts. Even though carbon steel is commonly used as a construction material due to its machinability and economical reason, it is susceptible to uniform and localized corrosion in a high temperature and high pressure system. Therefore, a coating system is introduced to protect the carbon steel against corrosion in such environment. -It is necessary to find the optimum composition of SiO2 addition in the organic coatings to enhance the material performance, i.e. coatings adhesion, thickness optimization, thermal resistance. Current project aims at the addition of Polyaniline (PANi) as the active agent to improve the corrosion resistance of materials against a high saline medium at elevated temperatures. T2 - BAM PhD Day CY - Berlin, Germany DA - 21.09.2017 KW - Geothermal KW - Corrosion KW - Coating PY - 2017 AN - OPUS4-43362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert A1 - Pelkner, Matthias A1 - Sonntag, Nadja A1 - Kreutzbruck, Marc A1 - Skrotzki, Birgit T1 - Bewertung der magnetischen Mikrostruktur für die Schadensfrüherkennung N2 - Die Mikrostruktur ferromagnetischer Materialien hat einen maßgeblichen Einfluss auf deren magnetischen Eigenschaften. Gerade bei niedrigen Feldstärken zeigen sich Parameter wie Koerzitivität, Permeabilität und Verlustleistung hoch sensitiv. Wir zeigen am Beispiel des unlegierten Baustahls S235JR, dass die magnetische Mikrostruktur an der Probenoberfläche in hohem Maße mit inhomogenen Dehnungen übereinstimmt. Zur Detektion der Kleinststreufelder verwenden wir speziell designte GMR Sensorik, die Sensitivität (3mV/V/kA/m) mit hoher Ortsauflösung (180 µm) vereint. Infolgedessen können wir auf eine aktive magnetische Anregung verzichten. Wir nutzen allein die sich durch magneto-mechanische Prozesse ausbildende „spontane“ magnetische Mikrostruktur des Materials. Das hervorragende Signal-Rausch-Verhältnis unserer GMR-Sensorik für inhomogene Streufelder erlaubt, schon geringe und lokal abgegrenzte plastische Deformationen in Form und Position reproduzierbar zu visualisieren. Die zugehörigen Signale zeigen die typische Sequenz von erhöhten positiven und negativen Normalkomponenten wie sie bei einer Rissanzeige der aktiven Streuflussprüfung (MFL - Magnetic Flux Leakage) beobachtet wird. Magnetisch kann eine plastische Zone daher als Vorstufe eines Risses betrachtet werden, deren relative Permeabilität für den Riss als Grenzfall zu μr = 1 tendiert. T2 - DGZfP-Jahrestagung CY - Koblenz, Germany DA - 22.05.2017 KW - Baustahl KW - GMR-Sensorik KW - Heterogene plastische Deformation KW - Zugversuch PY - 2017 AN - OPUS4-40375 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlichting, S. A1 - Hönig, Gerald A1 - Wagner, M. R. A1 - Müßener, J. A1 - Hille, P. A1 - Teubert, J. A1 - Schörmann, J. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Tuning of the quantum-confined Stark effect in wurtzite [0001] nanostructures by the internal-field-guarded-active-region design N2 - In this work we eliminate the QCSE without having any special requirements on the growth procedure or the material. Hönig et al. developed the Internal-Field-Guarded-Active-Region Design (IFGARD), which we experimentally investigate in this work based on GaN/AlN nanodiscs (NDs). T2 - Compound Semiconductor Week 2017 CY - Berlin, Germany DA - 14.05.2017 KW - Halbleiterphysik KW - Nanophysik KW - Optoelektronik KW - Piezopolarisation KW - Spontane Polarisation PY - 2017 AN - OPUS4-40174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Myrach, Philipp A1 - Ziegler, Mathias A1 - Unnikrishnakurup, Sreedhar A1 - Puthiyaveettil, N. A1 - Kruschke, H. A1 - Balasubramaniam, Krishnan T1 - Online Laser-thermografische Rissprüfung an Stahl bei hohen Temperaturen N2 - Die Detektion bzw. Charakterisierung von Oberflächenrissen in Stahl ist eine herausfordernde Aufgabe für die zerstörungsfreie Prüfung. Dies gilt insbesondere, wenn eine solche Prüfung bereits während der Produktion selbst erfolgen soll. Die hier vorgefundenen Randbedingungen, wie z.B. die hohen Probentemperaturen (>700°C) oder Vorschubgeschwindigkeiten von bis zu 0,9 m/min, machen die Anwendung etablierter und vor allem berührender ZfP-Methoden praktisch meist unmöglich. Laser-thermografische Verfahren können hier eine Alternative bieten, da sie berührungslos und schnell arbeiten. Wir stellen die Ergebnisse einer Weiterentwicklung der Laser-thermografischen Prüfung vor, bei der die Anwendbarkeit bzw. die Übertragbarkeit der Methode auf die Bedingungen der Stahlproduktion untersucht wurde. Neben der Simulation der Produktionsbedingungen im Labor und der experimentellen Untersuchung der entscheidenden Einflussgrößen, wurden umfangreiche FEM-Simulationen durchgeführt. Mit Hilfe dieser theoretischen und experimentellen Ergebnisse wurde das Verfahren auch hinsichtlich der Analyse-Algorithmen weiterentwickelt, um eine zuverlässige und schnelle In-Line Prüfung während des Produktionsprozesses zu ermöglichen. Um zudem die Fähigkeiten der Thermografiekamera für schnelle online-Messungen und ihre Integrierbarkeit in verschiedene Anwendungssysteme zu verbessern, wurde die für die Verarbeitung der Detektordaten erforderliche Non-Uniformity Correction der Pixeldaten auf schneller Spezialhardware innerhalb der Kamera implementiert. T2 - Thermografie-Kolloquium 2017 CY - Berlin, Germany DA - 28.09.2017 KW - Rissprüfung KW - Laserthermografie KW - Thermografie KW - Risse PY - 2017 AN - OPUS4-42922 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane A1 - Emmerling, Franziska T1 - Depth dependent phase identification of corrosion zones in ferritic alloys by micro-X-ray absorption near edge structure spectroscopy N2 - Ferritic steels with chromium contents up to 13 wt% are used as materials for power plant components as boiler materials (< 2 wt% Cr) and super heater tubes (> 9 wt% Cr). These materials are subject to aggressive corrosion caused by hot gases such as CO2, H2O, O2 and SO2. Especially SO2 causes fatal corrosion even as a minor component. To examine sulfurous corrosion mechanisms, experiments with pure SO2 were conducted. A proper analysis of the material changes requires phase identification and quantification with a high lateral resolution within the corrosion scale. T2 - ANAKON2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Corosion KW - Steel KW - XANES PY - 2017 AN - OPUS4-40415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Makris, Ruben A1 - Bronsert, Jeffrey A1 - Hille, Falk A1 - Kirschberger, D. A1 - Sowietzki, D. T1 - Crack Luminescence as innovative method for detection of fatigue damage N2 - Conventional methods of crack detection only provide a snapshot of the fatigue evolution at a specific location and in the moment of examination. The crack luminescence method realizes a clear visibility of the occurring cracks in loaded components during ongoing operation. Several different experiments show that due to the sensitive coating even the early stage of the crack formation can be detected what makes the crack luminescence helpful to determine the incipient crack opening behavior depending on load alternation. Due to the emitting of light under UV-radiation the crack gets clearly visible what makes continuous monitoring and automated crack detection possible. This can reduce costs and time needed for maintenance and inspection. T2 - Sensor +Test 2017 CY - Nuremberg, Germany DA - 30.05.2017 KW - Fatigue damage KW - Crack KW - Luminescence KW - Detection PY - 2017 AN - OPUS4-41839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - SiO2-haltige organische Beschichtung für geothermische Anwendungen N2 - Geothermieanlage werden teilweise unter extremen Bedingungen mit sehr salzhaltigen Wässern betrieben. Obwohl C-Stahl häufig für die Konstruktion verwendet wird, ist er in einem Hoch-temperatur- und Hochdrucksystem anfällig für gleichmäßige und örtliche Korrosion. Daher soll ein Beschichtungssystem den C-Stahl schützen. Schlussverfolgung Es ist notwendig, die optimale SiO2-Zugabe zur organischen Beschichtung zu untersuchen, damit deren Eigenschaften, wie z.B. Haftfestigkeit, optimale Schichtdicke, und Temperaturbeständigkeit, verbessert werden. Das derzeitige Projekt zielt auf die Zugabe von Polyanilin (PANi) als Wirkstoff zur Verbesserung der Schichteigenschaften für die Erhöhung der Korrosionsbeständigkeit des Systems in stark salzhaltigen Medien bei höheren Temperaturen. T2 - GfKORR Jahrestagung CY - Frankfurt/Main, Germany DA - 07.11.2017 KW - Geothermie KW - Beschichtung KW - Korrosion PY - 2017 AN - OPUS4-43361 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Elert, Anna Maria A1 - Sturm, Heinz T1 - Studies on interphase formation of cured epoxy resin near boehmite surface N2 - The application of inorganic nanoparticles as reinforcement agent for polymer composites is constantly growing. Improving the performance of the material with desirable properties requires understanding of the interaction between polymer chains and nanoparticles and the properties of the interphase as well. Boehmite, a mineral of aluminum with basic unit of AlO(OH), is a novel and promising nanofiller which leads to enhanced performance of polymer composites. It has been recently reported that boehmite nanoparticles have reinforcing effect on epoxy matrix in carbon-fiber composites. It was primarily assumed that these improvements are due to very high Young’s modulus of boehmite particles. However, in our latest study we presented new values for the Young’s modulus of boehmite much lower than those reported earlier. This brings up the importance of interphase properties, e.g. the crosslink density, which can have the dominant role in the overall material property. Nevertheless, due to resolution limitations of conventional nanoprobing approaches, characterization of the interphase between individual particles and matrix is a challenge. In this study, the main goal is to investigate the interphase of the epoxy/boehmite nanocomposites using AFM-based methods. We simplify the three-dimensional nanocomposite system to a two-dimensional horizontally layered sample with a large and easy to access interphase area. For this purpose, 1µm coatings of hydrothermally synthesized boehmite are prepared as the substrate on which the epoxy is later molded and cured. AFM surface potential and force maps were obtained on the cross-sectional cut of epoxy/ boehmite sample. The results show unexpectedly a large interphase area (approx. 1 µm) with different electrical and mechanical properties comparing to bulk epoxy. The average force-distance curves from this region showed more elastic behavior compared to bulk. The underlying mechanism of this influence is not fully understood yet. Thus, further investigation on the interphase region using the novel Nano-IR approach provides more information about the chemical characteristics. Numerical simulation will give complementary information to understand the effect of nanoparticles on the crosslinking density of the interphase. This can be different to bulk epoxy due to either different local temperature gradients or due to a surface selectivity of boehmite towards the monomer molecules. T2 - ICCS20–20th International Conference on Composite Structures CY - Paris, France DA - 04.09.2017 KW - AFM KW - AFM-IR KW - ImAFM KW - Boehmite KW - Epox KW - Nanocomposite KW - Interphase KW - Nanomechanics PY - 2017 AN - OPUS4-50689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cano Murillo, Natalia A1 - Elert, Anna Maria A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Electron beam modified cellulose acetate electrospun mats N2 - The electrospun fibers with micrometer diameter show ribbon-like morphology, the physical features are further studied by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared Spectroscopy (FTIR) and Raman and XPS Spectroscopy is used to study the changes after irradiation. Partial electron beam treatment of the electrospun mats lead to localized fluorescence with a broad band emission. The change in the optical response of the fluorescent area in the mats is measured under different chemical environments to evaluate their suitability as an optical chemical sensor in polar and non polar environments. T2 - EUROMAT 2017 CY - Thessaloniki, Greece DA - 17.09.2017 KW - Fluorescence quenching KW - Electrospinning KW - Electron beam PY - 2017 AN - OPUS4-42172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Experimental study on M23C6 nucleation and growth mechanisms in Ni-base superalloy single crystals N2 - The addition of carbon to Ni-base superalloy single crystals has been increasingly carried out to improve low angle grain boundary (LAGB) resistance and castability. Consequently, the precipitation of carbides is highly probable during long-term application of components subjected to higher temperatures (> 1000 °C). While the view on the role of carbides as strengthening or detrimental is polemical, their inevitable increased presence in carbon-doped alloys must be addressed. In the present work, the evolution of M23C6 carbides forming in the commercial grade Ni-base superalloy LEK 94 during high-temperature and low-stress creep exposure is assessed. Although carbon is not intentionally added to the LEK 94 alloy, it admits up to 0.1 at. %, which together with the high content of M23C6-forming transition metals, leads to their precipitation. The precipitation is induced here during creep experiments at 1020 °C and a nominal applied stress of 160 MPa along [001]. The correlation of precipitation and external load is carried out by evaluating the carbides in the gage section of parallel and circularly notched cylindrical samples, as well as in their heads. Characterization is made by transmission electron microscopy (TEM). Although primary MC carbides form mostly in interdendritic regions during casting, high temperature exposure induces M23C6 carbide nucleation especially in the γ phase of dendritic regions, where a stronger partitioning of refractory elements is present. The carbides have a needle shape with their main axis on 〈100〉 and a cube-on-cube orientation relationship. They present incoherent {100} facets along their elongated region and semi-coherent {111} facets at their ends. Their nucleation and growth mechanisms are discussed based on microstructural observation under different experimental conditions. T2 - Modelling and Simulation of Superalloys. International Workshop. CY - Bochum, Germany DA - 29.03.2017 KW - Ni-base superalloy KW - Single cystal KW - Creep KW - Carbide KW - Scanning transmission electron microscopy (STEM) PY - 2017 AN - OPUS4-40249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulla, Hannes A1 - Becker, C. A1 - Paulus, B. A1 - Casati, N. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - In situ investigations of a mechanochemical cocrystal formation by X-ray diffraction in two different milling jars N2 - We present an in situ PXRD investigation of the mechanochemical cocrystal formation of pyrazinamide with pimelic acid in two milling jar materials. DFT calculations of the two synthesized polymorphs suggest that the relative stability is based on a conformation change of pyrazinamide in the cocrystal. T2 - 3. BAM-BfR Workshop CY - Berlin, Adlershof, Germany DA - 15.02.2018 KW - Mechanochemistry KW - Cocrystal KW - Polymorph KW - In situ XRD KW - DFT PY - 2018 AN - OPUS4-44315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hinsch, Alexandra A1 - Strelow, Christian A1 - Kipp, Tobias A1 - Würth, Christian A1 - Geißler, Daniel A1 - Resch-Genger, Ute A1 - Mews, Alf T1 - The influence of the individual Particles on the ensemble Quantum Yield of elongated CdSe/cds core/Shell nanoparticles N2 - Colloidal semiconductor nanoparticles with a spherical core and an elongated shell form bright emitters with a high absorption cross section. They show great potential for a multitude of optoelectronic applications such as LEDs or photovoltaic cells and can be used as gain material or as markers for bio imaging. For most of these applications high fluorescence quantum yields are a figure of merit for the emitter quality. In this work we investigate how the ensemble quantum yield is affected by the properties of the individual particles. In particular, we prove the role of non-emitting particles as well as the role of blinking. Using a combination of AFM and spatially resolved photoluminescence spectroscopy we measured hundreds of individual CdSe/CdS dot/rod particles of different shell lengths exciting with two different excitation wavelengths for shell or core excitation, respectively. T2 - SPIE Photonics West CY - San Francisco, CA, USA DA - 27.01.2018 KW - Exciton diffusion KW - Quantum Dot-Rod KW - Quantum Yield PY - 2018 AN - OPUS4-44759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -