TY - CONF A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Soukka, T. T1 - Upconverting nanoparticle based assays and sensor systems for bacteria/biofilm detection N2 - Results of the short term scientific mission of Sebastian Radunz funded by the european upconversion network. T2 - Short term scientific mission CY - Turku, Finland DA - 09.01.2017 KW - Upconverting nanoparticles KW - Assays PY - 2017 AN - OPUS4-39328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda A1 - Sentker, K. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Structure, Dynamics and Phase Behavior of a Discotic Liquid Crystal Confined in Nanoporous Anodic Aluminum Oxide Membranes N2 - The interest in porous anodic aluminum oxide (AAO) has been rapidly growing due to its numerous applications in separation, catalysis, energy generation and storage, electronics, and sensors. From the scientific point of view, AAO is a topical interest in soft matter fields. Spatial confinement of soft matter in nanoporous media influences its structure, thermodynamics, and mobility. Embedding polymers and liquid crystals into nanopores of AAO results in a 2D nanoconfinement of these materials. This confinement affects their properties, compared to the bulk, such as phase transition temperatures and enthalpies, molecular mobility, and architecture of the crystallization. On the other hand, discotic liquid crystals (DLCs) are a promising class of soft matter for electronic applications. This is due to their ability to organize and stack themselves into columns in a hexagonal columnar mesophase, a mesophase in between the plastic crystalline and isotropic phase, driven by the overlap of the π orbitals of their aromatic core. This leads to a high charge-carrier mobility along the column axis. Further, these columns could then be considered as “molecular nanowires”. In this study, 2,3,6,7,10,11 hexakis[hexyloxy] triphenylene (HAT6), a triphenylene based DLC, was confined into nanoporous AAO membranes. The structure, dynamics and the phase behavior of the confined HAT6 were investigated by broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC). HAT6 was embedded into nanoporous AAO membranes by melt infiltration in the isotropic phase under argon atmosphere. The membranes have parallel aligned cylindrical nanopores, with pore diameter of 10, 20, 25, 40, 80, 120 and 180 nm. The filling degree for each sample was checked by thermogravimetric analysis (TGA) in order to ensure complete filling. Bulk HAT6 forms a hexagonal columnar phase; in between the isotropic phase above 371 K and the plastic crystalline phase below 340 K. Unlike the bulk, the confined HAT6 split the plastic crystalline-to-hexagonal columnar phase transition in two, which might be interpret as two different phase structures; close to the wall and at the pore center. Moreover, the isotropic-to-columnar transition of the confined HAT6 shifted, with decreasing pore diameter, to lower temperatures. Furthermore, pore surfaces of a series of membranes were chemically modified, resulting in a more hydrophobic pore surface than the unmodified ones. HAT6 was embedded into the modified membranes by the same aforementioned preparation. The influence of the changed host-guest-interaction, on the structure, dynamics, and the phase behavior of HAT6 confined in the modified membranes, was also investigated by BDS and DSC. T2 - 9th International Conference on Porous Media & Annual Meeting CY - Rotterdam, The Netherlands DA - 08.05.2017 KW - Nanoporous media KW - Anodic Aluminum Oxide KW - Discotic Liquid Crystal PY - 2017 AN - OPUS4-40089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Lüchtenborg, Jörg A1 - Hlavácek, Petr A1 - Günster, Jens A1 - Kühne, Hans-Carsten T1 - Additive manufacturing of geopolymers by selective laser curing N2 - Additive manufacturing (3D printing) of ceramics and other materials offers significant advantages compared to conventional production processes for several applications. While ceramics have been extensively investigated in this regard, additive manufacturing of geopolymers have received much less attention to date. In the present contribution we study a ‘standard’ metakaolin-based geopolymer, a fly ash-based geopolymer and a silica-based one-part geopolymer regarding their suitability for additive manufacturing via selective laser curing. Model geometries such as bars and cuboids could be produced by this route. After selective laser curing the specimens were additionally cured at 80 °C for 24 h. The specimens were studied by means of scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). SEM showed that the precursors in all geopolymers had reacted partially and geopolymeric gel had formed. XRD confirmed these results and additionally revealed that the crystalline byproducts (zeolites) in the one-part geopolymer differed from the byproducts observed in conventionally produced samples. This indicates that also the geopolymerization reactions differ between the two synthesis routes. The mechanical strength after selective laser curing and 80 °C-curing appeared to be highest for the metakaolin-based geopolymer. However, SEM also showed that a significant volume of macropores remained in most regions of all specimens, while some regions in the metakaolin-based geopolymer appeared to be significantly denser. These preliminary results demonstrate that selective laser curing offers potential for the production of geopolymers, but more research has to be undertaken to optimize the process. T2 - 92. DKG Jahrestagung CY - Berlin, Germany DA - 19.03.2017 KW - Geopolymers KW - Inorganic polymers KW - Additive manufacturing KW - 3D printing KW - Selective laser curing PY - 2017 AN - OPUS4-39514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Sameith, Janin T1 - Effect of surface degradation on high-density polyethylene for biofilm formation N2 - Renewable resources become more and more relevant to maintain energy demands for an increasing global population. Biosynthetic fuels like biodiesel might replace conventional petrochemical fuels. In this study the influence of microbial growth on biodiesel and diesel on the storage tank systems were investigated. Polymeric fuel storage tanks for diesel and biodiesel provide suitable environmental conditions for a broad spectrum of fungi and various bacteria, including cyanobacteria and aerobic heterotrophic, and even anaerobic, fermentative Bacteria. However, the questions whether and how ageing of the materials is affected by biofouling processes have not been answered so far. Therefore, a model system for biofilm formation was established to study the initial attachment phase of bacteria in dependency of ageing, quality and surface modification of thermoplastic polymers used for storage tank systems. The microbial survey is closely connected with a detailed characterization of the material’s properties and its ageing processes. A widely applied plastic used for fuel storage tanks is high-density polyethylene (PE-HD), which is available with various additives to increase UV-light stability and even for the storage of biodiesel. These materials were aged under UV-light and temperature using a defined climate chamber set-up. Further, the repeated filling of fuels was mimicked for such storage tanks, as this has an important impact on the life-cycle length for the storage Container. The aged polymers showed a significant change in the material’s characteristics, including surface characteristics (e.g. hydrophobicity) and carbonyl groups. The effect of the changed material properties on the biofilm formation are studied using bacterial isolates, previously obtained from a “dieselpest”, and as a model-reference E. coli. The unaged polymers showed already some significant differences for the initial attachment of E. coli K12. Polyethylene with additives was colonized faster than the reference material (without additives) although the final biofilm coverage was not impaired. Likewise, the settlement of a kerosene-isolated Bacillus species on the unaged materials independently of additives was only minor interfered. In future, our results should give stakeholders in industry and public authorities a better estimation of the life-cycle security for fuel storage tank systems and on the fuel quality. Further, our results could help to test and develop new materials or additives to prevent biofouling processes. T2 - VAAM Jahrestagung CY - Würzburg, Germany DA - 05.03.2017 KW - PE-HD KW - Biofilm KW - MIC KW - Degradation PY - 2017 AN - OPUS4-39457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane A1 - Emmerling, Franziska T1 - Depth dependent phase identification of corrosion zones in ferritic alloys by micro-X-ray absorption near edge structure spectroscopy N2 - Ferritic steels with chromium contents up to 13 wt% are used as materials for power plant components as boiler materials (< 2 wt% Cr) and super heater tubes (> 9 wt% Cr). These materials are subject to aggressive corrosion caused by hot gases such as CO2, H2O, O2 and SO2. Especially SO2 causes fatal corrosion even as a minor component. To examine sulfurous corrosion mechanisms, experiments with pure SO2 were conducted. A proper analysis of the material changes requires phase identification and quantification with a high lateral resolution within the corrosion scale. T2 - ANAKON2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Corosion KW - Steel KW - XANES PY - 2017 AN - OPUS4-40415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Marzok, Ulrich A1 - Müller, Ralf T1 - Glass structures with low helium and hydrogen permeability N2 - An efficient energy provision using fuel cells is linked to effecitve hydrogen storage capabilities. Because of its low intrinsic hydrogen permeability, glass has a huge potential in modern concepts of hydrogen storage. Previous studies on oxidic glasses showed an empirical connection between glass composition and gas permeation, which was mainly derived from the behavior of silica glass. In this study we focus on the relationship between topologic (free volume; network polymerization) and thermodynamic (configurational entropy) parameters. The comparison of three glasses within the meta (earth-) alkaline alumino silicate system to silica glass shows that an increase of the atomic packing factor (APF) does not necessarily decrease the permeability. Furthermore, the results suggest a connection between ΔCp at Tg and hydrogen permeability of the glass. All experiments were performed assuming that chemical hydrogen solubiltity in glass is negligible at temperatures well below the glass transition temperature. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Hydrogen permeability KW - Glass composition KW - Atomic packing factor KW - Configurational entropy KW - Diffusion coefficient PY - 2017 AN - OPUS4-40488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schadow, Florian A1 - Gaal, Mate A1 - Bartusch, Jürgen T1 - Sende-Empfangs-Prüfköpfe auf Ferroelektret-Basis für Luftultraschall-Anwendungen N2 - Leichtbaustrukturen aus Verbundwerkstoffen stellen einen immer größeren Anteil im Flugzeug- und Automobilbau dar. Hiermit steigt die Nachfrage nach zuverlässigen, zerstörungsfreien Prüfmethoden, welche an solche Strukturen angepasst sind. Besonders Luftultraschall (LUS) eignet sich für diese Aufgabe, da hier kein Koppelmedium benötigt wird. Derzeit wird für diese Methode jedoch oft ein beidseitiger Bauteilzugang für eine Prüfung in Durchschallung vorausgesetzt. Handelsübliche Prüfköpfe für Luftultraschallanwendungen nutzen zudem meist Anpassschichten um den Impedanzunterschied zwischen Schwinger und Luft zu reduzieren. Sowohl Signal-Rausch-Abstand als auch die Bandbreite der resultieren-den Prüfköpfe ist für viele Anwendungen jedoch nicht ausreichend. Durch den Einsatz von Ferroelektreten wie zellulärem Polypropylen (zPP) kann hingegen vollständig auf Anpassschichten verzichtet werden. Hierbei handelt es sich um polarisierte, zelluläre Polymerschichten mit sehr geringer Dichte, Steifigkeit und Schallgeschwindigkeit. In diesem Beitrag stellen wir drei verschiedene Sende-Empfangs-Prüfköpfe vor, welche auf zellulärem Polypropylen basieren. Anhand von Schallfeld, Signal-Rausch-Abstand und Sendepegel werden diese Prüfköpfe charakterisiert. Die Ergebnisse werden mit den Ergebnissen von Referenzprüfköpfen ohne Sende-Empfangs-Charakteristik verglichen. Bei den Referenzprüfköpfen werden sowohl handelsübliche LUS-Prüfköpfe, sowie bisher entwickelte Prüfköpfe aus zellulärem Polypropylen berücksichtigt. T2 - DGZFP Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - Sende-Empfangs Prüfkopf KW - Ferroelektret KW - Zelluläres Polypropylen KW - Charakterisierung KW - Luftultraschall PY - 2017 AN - OPUS4-40430 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Tagle, R. T1 - SEM and Micro-XRF analysis to investigate stained glass windows N2 - Several restoration projects of stained-glass windows have been performed in Poland since 2010.Chemical analysis of glass samples was performed with SEM/EDX on a FEI ESEM-XL 30, (EDX-EDAX) and with Micro-XRF (M4 Tornado, Bruker).The chemical composition of medieval glass samples and of glass samples of the 19th Century have been determined. T2 - Technart2017 CY - Bilbao, Spain DA - 02.05.2017 KW - SEM KW - Micro-XRF KW - Glass composition PY - 2017 AN - OPUS4-40435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Schwarzer, Stefanie A1 - Eiben, Mario T1 - Suitable test method for the determination of the environmental stress cracking behaviour of polyethylene terephthalate as material for dangerous goods packagings N2 - The chemical industry has expressed great interest in using polyethylene terephthalate (PET) as material for packagings for the transport of dangerous goods. Due to the high strength and stiffness of PET, the wall thickness and weight of packagings can be reduced. The aim of this work was to find a laboratory test method for the determination of the stress cracking resistance of PET. One test method is the Full Notch Creep Test (FNCT), which was developed for polyethylene (PE) and is described in the standards EN ISO 13274 and EN 15507. It was investigated whether testing specimens made of PET with a full coplanar notch around the middle of the specimens show weakening after the impact of a tensile force in a wetting solution at 50°C. Unfortunately, this method couldn’t be used for PET because the specimens broke during notching due to the high brittleness of PET. The molding of the sheets and the following temper process for twelve hours are very time-consuming, Another possibility is laid down in BAM’s Dangerous Goods Rule BAM-GGR 015. This test was carried out with 1l PET bottles, which were filled with a 5% wetting solution and mounted with a clamping tool for 28 days at 40°C. Tensile test specimens were cut out afterwards from the middle of the bottles in the deformed areas. The tensile properties of the PET specimens couldn’t be determined due to the hardness of the material. In conclusion, the only way to provide information about the stress cracking resistance of PET was to perform stacking tests with PET design types of packagings. 1l bottles made of PET were filled with a 5% wetting solution and stored with a stacking load for 28 days at 40°C according to EN ISO 16495. The test bottles of PET passed the stacking tests. T2 - Fifth International Symposium Frontiers in Polymer Science CY - Seville, Spain DA - 17.05.2017 KW - Polyethylene terephthalate KW - Stress cracking resistance KW - Laboratory method KW - Dangerous goods packaging PY - 2017 AN - OPUS4-40438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Gaber, Martin A1 - Reinsch, Stefan A1 - Welter, T. A1 - Deubener, J. T1 - Measurement of H2 permeability of glasses with VHE powder method N2 - The development of glassy hydrogen barriers requires the determination of low H2 permeabilities. Previous studies and numerical simulations have shown that the VHE powder method (vacuum hot extraction with mass spectrometric gas detection) is suitable for this purpose. The measured isothermal gas emission is fitted to a classical diffusion model for spherical particles from which the diffusion coefficient of the glass is calculated. The H2 permeability is determined by means of the solubility determined from the same measurement data. This presentation is referring to the optimization of the method regarding sample preparation and measurement data evaluation using suitable experimentally determined particle size distributions is reported. For quartz glass, it is shown that the accuracy of classical measuring methods is achieved with the VHE powder method. Furthermore, other examples of substantially gas-tighter glasses are given. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Hydrogen permeation KW - Glass KW - Vacuum hot extraction KW - Powder method KW - Diffusion coefficient PY - 2017 AN - OPUS4-40441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Reetz, R. A1 - Lauven, G. T1 - 3D High-temperature laser profilometry during sintering N2 - Most crucial for components of complex shape or heterogeneous micro structure, precise control of sintering has decisive influence on dimensional accuracy, mechanical integrity and reliability of sintered components. In these cases, only in situ 3D high-temperature shape screening during shrinkage would allow revealing temporary sinter warpage and hereby caused potential defects. Against this background, nokra Optische Prüftechnik und Automation GmbH, HTM Reetz GmbH and BAM developed a testing device for in situ 3D shape screening for ceramic and glass-ceramic tapes up to 1000°C by means of high-temperature laser profilometry. The local repeatability of the sample-sensor distance (sample height profile) is 10 µm at 1000°C. Current work is focused on dropping these restrictions in sample shape and temperature. In a second testing device, currently being in development, samples up to 5 cm x 5 cm x 5 cm can be measured at temperatures up to 1500°C.The presentation illustrates the current state of this work and possible applications of the method. T2 - 92. DKG Jahrestagung CY - Berlin, Germany DA - 19. 03. 2017 KW - Laser profilometry KW - 3D High-temperatue shape screening KW - Sintering PY - 2017 AN - OPUS4-40449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Bruno, Giovanni T1 - Residual stress analysis in selective laser melted parts of superalloy IN718 N2 - Additive Manufacturing (AM) by Selective Laser Melting (SLM) offers ample scope for producing geometrically complex parts in comparison to the traditional subtractive manufacturing strategies. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - 19th HERCULES Specialized Course CY - Grenoble, France DA - 15.05.2017 KW - Additive manufacturing KW - Selective laser melting KW - Residual stresses KW - Distortion KW - Microstructure PY - 2017 AN - OPUS4-40388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kabelitz, Anke A1 - Dinh, Hoang An A1 - Emmerling, Franziska T1 - A02: Time-resolved WAXS studies on the crystallization of Al13 keggin clusters N2 - Polynuclear aluminium species (Al13 keggin cluster) find application in different areas like water purification, contaminant transport, and as pilling clays with high specific surface areas, due to their strong binding ability to aggregates and high positive charge. In the present contribution, we report on the in situ investigation of the Al13 sulfate synthesis by synchrotron wide-angle X-ray scattering (WAXS). Al13 cluster were crystallized by precipitating hydrolyzed aluminum solutions by the addition of sodium sulfate. The measurements were performed using a custom-made acoustic levitator as sample holder. The study provides information about the intermediates during the crystallization process. From the data, a mechanism was derived indicating the influence of the crystallization process. T2 - International Symposium of the CRC 1109 CY - Berlin, Germany DA - 19.02.2017 KW - WAXS KW - In situ KW - Crystallization PY - 2017 AN - OPUS4-39367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NbC) as cutting tools and for wear protection N2 - Niobium is today largely available. NbC grades displayed lower dry sliding friction over WC grades. The softer Ni- and NiMo-bondes NbC1.0-grades have a higher abrasive wear resistance (ASTM G65), even with lower toughnesses, as the tougher WC-Co grades. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Cutting tools KW - Hardness PY - 2017 AN - OPUS4-40512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Steinborn, Gabriele A1 - Woydt, Mathias T1 - Colloidal processing of metal bonded niobium carbide (NbC-Ni) N2 - The manufacturing of NbC with Ni binder with addition of titanium carbide by using a colloidal process for blending the different powders without a milling step were investigated. The the sintering process and formation of the resulting microstructures, the phase relations and the hardness of the produced cermet materials are characterized. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Cermets KW - Hardness PY - 2017 AN - OPUS4-40513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wagner, Sabine A1 - Carrasco, S. A1 - Benito-Peña, E. A1 - Moreno-Bondi, M. C. A1 - Rurack, Knut T1 - Detection of antibiotics by combining fiber-optic array with microparticles coated with fluorescent molecularly imprinted polymers N2 - The widespread use of antibiotics in livestock farming leads to trace residues in food products and wastewater, potentially entailing antimicrobial resistance in food-borne pathogens. The determination of antibiotics in aqueous environments and foodstuff is thus of major concern. We have been developing optical sensors based on molecularly imprinted polymers (MIPs) due to the low production costs, stability, format adaptability and the possibility to imprint and thus their ability to recognize a wide variety of target analytes. As a fluorescently responding moiety in the polymer matrix a tailor-made fluorescent indicator cross-linker for direct transfer of the binding event into an optical signal was used. If such a cross-linker is integrated into a thin MIP-shell on microspheres such core/shell particles can be readily used in advanced multiplexing sensory fiber-optic microarrays. Here, we propose such a fiber-optic microarray based on fluorescent MIP microspheres for antibiotics. The binding behavior and the selectivity of a microarray using these silica core/MIP shell beads were examined and compared with a non-imprinted polymer (NIP) control, employing the target molecules and other structurally closely related antibiotics. T2 - APME2017 CY - Ghent, Belgium DA - 21.05.2017 KW - Molecularly imprinted polymers KW - Multiplexing sensory fiber-optic microarrays KW - Antibiotics PY - 2017 AN - OPUS4-40583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Knabe, Nicole A1 - Toepel, J. T1 - Organic surface coatings on medieval stained glass and microbiological investigation N2 - Mediaeval stained glass has been treated with Polymethylmetacrylate coatings by Kwiatkowski in Poland during the 1950th. Such treated panels were found in the Johannis Church of Toruń (without protective glazing), in the Cathedral of Włocławek (behind a protective glazing), and on glass kept in exhibition cases in the museum of Toruń. Surface coatings have been detected and analyzed. There was no extensive contamination by fungi or bacteria if the glass was either coated or not. T2 - Glass Science in Art and Conservation 2017 CY - Lisbon, Portugal DA - 06.06.2017 KW - Microbiological investigation KW - Medieval stained glass KW - SEM analysis PY - 2017 AN - OPUS4-40573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uhlmann, E. A1 - Kropidlowski, K. A1 - Woydt, Mathias A1 - Sammler, F. T1 - Cutting tools made from niobium carbide N2 - The Federal Institute for Materials Research and Testing (BAM) and the Institute for Machine Tools and Factory Management (IWF) of the Technical University Berlin analyzed the suitability of various NbC types in comparison to tungsten carbide (WC) for use as a tool in cutting processes. The focus was placed on the optimization of the functional profile of NbC-based cutting materials with reproducible industrial production. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Tungsten carbide (WC) KW - Cutting material PY - 2017 AN - OPUS4-40515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taparli, Ugur Alp A1 - Jacobsen, L. A1 - Griesche, Axel A1 - Michalik, K. A1 - Mory, D. A1 - Kannengießer, Thomas T1 - Time- and space-resolved in situ LIBS measurements of chemical compositions during TIG-welding N2 - An in situ monitoring of chemical compositions in the weld pool and the heat affected zone (HAZ) can enable the control of the welding process through the regulation of the welding parameters, and thus can prevent possible weld defects. The most critical parameter for hot cracking -from a metallurgical point of view- is the chemical composition of the weld pool. Chemical composition can be measured and quantified during the welding process with the LIBS technique having the appropriate calibration measurements. T2 - ICWAM 2017 CY - Metz, France DA - 17.05.2017 KW - Chemical compositions KW - TIG-welding KW - In situ measurement KW - LIBS PY - 2017 AN - OPUS4-40313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Bärbel A1 - Rabe, Torsten A1 - Salehi, Mahdi T1 - High-temperature stability of ceramic springs N2 - Metallic springs undergo oxidation and creep at elevated temperatures and their use is limited to temperature of about 650°C. Therefore, there is a need for stable materials which can easily withstand temperatures up to 1000°C for long periods in different atmospheres. Ceramic materials have been drawing attention due to their excellent properties. This work aimed at investigating the high-temperature stability of zirconia and alumina ceramic springs at elevated temperatures under different atmospheres (air, N2 and H2) in order to determine the limitation of use of these ceramic springs. T2 - DKG 2017 CY - Berlin, Germany DA - 20.03.2017 KW - Ceramic spring KW - High-temperature stability KW - Harsh environments KW - Spring constant PY - 2017 AN - OPUS4-40289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -