TY - JOUR A1 - Jlalia, I. A1 - Chabbah, T. A1 - Chatti, S. A1 - Schiets, F. A1 - Casabianca, H. A1 - Marestin, C. A1 - Mercier, R. A1 - Weidner, Steffen A1 - Kricheldorf, H. R. A1 - Errachid, A. A1 - Vulliet, E. A1 - Hammani, M. A1 - Jaffrezic-Renault, N. T1 - Alternating bio-based pyridinic copolymers modified with hydrophilic and hydrophobic spacers as sorbents of aromatic pollutants N2 - The main objective of this work was to design new advanced sorbent phases, alternating copolymers, derived from isosorbide and 2,6-difluorpyridine, to be used for the removal of aromatic organic pollutants present in water at low concentrations. Six different monomers, dianhydrohexitols isomers and bisphenol derivatives, weresynthesized in order to make it possible to study their hydrophilic and hydrophobiceffect on the sorption efficiency of the resulting polymeric phases. Before this study, we have confirmed the chemicals structures, molecular weights, and thermal properties of the obtained polymeric phases. Sorption results show a higher adsorption efficiency of P6 co-poly(ether-pyridine) based on bisphenol substituted with pyridineunits, for all tested pollutants, hydrophobic and hydrophilic ones, due to its less compact structure. Two aromatic organic pollutants, p-hydroxybenzoic acid and toluicacid, were selected as sorbates to study the adsorption characteristic, kinetics and isotherms of the copoly(ether pyridine) P6. Langmuir model led to a better fitting of the sorption isotherms; the sorption of toluic acid is easier than of that p-hydroxybenzoic acid. Comparing 1/n values for benzoic acid was two time lower for P6 compared to that for biochar and for crosslinked methacrylate resin, showing a higher efficiency KW - Alternating co-poly(ether pyridine)s KW - Aromatic organic compounds, KW - Biosourced isosorbide KW - Sorption isotherm KW - Sorption mechanism PY - 2021 DO - https://doi.org/10.1002/pat.5578 VL - 33 IS - 4 SP - 1057 EP - 1068 PB - Wiley Online Library AN - OPUS4-54031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witt, Julia T1 - In situ Atomic Force Microscopy (AFM) studies of corrosion processes on thin film coated AA2024-T3 aluminium alloy surfaces N2 - The performance of functional coatings relies strongly on the stability of the polymer-metal interface. The increasing utilization of multi-material structures in the automotive and aerospace industry necessitates a fundamental understanding of the processes leading to interface degradation for the development of novel strategies to increase corrosion and delamination resistance. The aim of this project is to investigate the corrosion processes at the buried interface of thin film coated aluminium alloy AA2024-T3 under corrosive and coupled corrosive-mechanical load. A spin coating procedure was developed to synthesize epoxy-like coatings and their nanofiller loaded composites with controlled thickness by layer-by-layer deposition of poly[(o-cresyl glycidyl ether)-co-formaldehyde] and poly-(ethylenimine) bi-layers. Our results indicate that the incorporation of graphene into the epoxy-based coatings leads to the improvement of mechanical and barrier properties. Furthermore, the functional groups play important roles in the interfacial bonding between polymer matrix and the nanofillers. Atomic force microscopy (AFM) results indicate very homogeneous and dense films with a thickness of ~25 nm per bi-layer and the successful integration of the nanofillers into the composite coatings. Ellipsometry measurements of film thickness verified a proportional film growth with the number of deposited layers. The degradation and delamination behavior of the coating systems was characterized by means of in situ AFM corrosion experiments. Complementary energy dispersive X-ray spectroscopy (EDX) analysis was used to correlate the corrosion and delamination behavior with the different intermetallic particle chemistries and distributions. The presentation will summarize our results on the effect of coating composition and build-up on the local corrosion processes on thin film covered AA2024-T3 aluminium alloys. T2 - Eurocorr 2021 CY - Online meeting DA - 20.09.2021 KW - In situ AFM KW - Corrosion KW - Thin epoxy-based films PY - 2021 AN - OPUS4-54053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michna, A. A1 - Maciejewska-Prończuk, J. A1 - Wasilewska, M. A1 - Kilicer, Tayfun A1 - Witt, Julia A1 - Özcan Sandikcioglu, Özlem T1 - Effect of the Anchoring Layer and Transport Type on the Adsorption Kinetics of Lambda Carrageenan N2 - The kinetics of lambda carrageenan (λ-car) adsorption/desorption on/from anchoring layers under diffusion- and convection-controlled transport conditions were investigated. The eighth generation of poly(amidoamine) dendrimers and branched polyethyleneimine possessing different shapes and polydispersity indexes were used for anchoring layer formation. Dynamic light scattering, electrophoresis, streaming potential measurements, optical waveguide lightmode spectroscopy, and quartz crystal microbalance were applied to characterize the formation of mono- and bilayers. The unique combination of the employed techniques enabled detailed insights into the mechanism of the λ-car adsorption mainly controlled by electrostatic interactions. The results show that the macroion adsorption efficiency is strictly correlated with the value of the final zeta potentials of the anchoring layers, the transport type, and the initial bulk concentration of the macroions. The type of the macroion forming the anchoring layer had a minor impact on the kinetics of λ-car adsorption. Besides significance to basic science, the results presented in this paper can be used for the development of biocompatible and stable macroion multilayers of well-defined electrokinetic properties and structure. KW - AFM KW - Dynamic light scattering KW - Electrophoresis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540546 DO - https://doi.org/10.1021/acs.jpcb.1c03550 VL - 125 IS - 28 SP - 7797 EP - 7808 PB - American Chemical Society AN - OPUS4-54054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lee, P.-W. A1 - Kaynak, T. A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Schalley, C. T1 - Effect of Perfluorinated Side-Chain Length on the Morphology, Hydrophobicity, and Stability of Xerogel Coatings N2 - Superhydrophobic surfaces can be quickly formed with supramolecular materials. Incorporating low-molecular-weight gelators (LMWGs) with perfluorinated chains generates xerogel coatings with low surface energies and high roughness. Here, we examine and compare the properties of the xerogel coatings formed with eight different LMWGs. These LMWGs all have a trans-1,2-diamidocyclohexane core and two perfluorinated ponytails, whose lengths vary from three to ten carbon atoms (CF3 to CF10). Investigation of the xerogels aims to provide in-depth information on the chain length effect. LMWGs with a higher degree of fluorination (CF7 to CF10) form superhydrophobic xerogel coatings with very low surface energies. Scanning electron microscopy images of the coatings show that the aggregates of CF5 and CF7 are fibrous, while the others are crystal-like. Aggregates of CF10 are particularly small and further assemble into a porous structure on the micrometer scale. To test their stabilities, the xerogel coatings were flushed multiple times with a standardized water flush test. The removal of material from the surface in these flushes was monitored by a combination of the water contact angle, contact angle hysteresis, and coating thickness measurements. A new method based on image processing techniques was developed to reliably determine the change of the coating thickness. The CF7, CF9, and CF10 surfaces show consistent hydrophobicity and coating durability after repetitive flushing tests. The length of the perfluorinated side chains thus has a significant effect on the morphology of the deposited xerogel coatings, their roughness, and, in consequence, their hydrophobicity and mechanical durability. KW - Coating materials KW - Amorphous materials KW - Hydrophobicity KW - Materials Stability PY - 2021 DO - https://doi.org/10.1021/acs.langmuir.1c02341 SN - 1520-5827 VL - 37 IS - 49 SP - 14390 EP - 14397 PB - ACS Publications AN - OPUS4-54071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced Characterization of the Surface Morphology and Chemistry within nano@BAM N2 - Both essential aspects of the surface of solid matter, its morphology and chemistry, are studied traditionally at BAM starting in the 60’s with different cyclical research focus areas, mostly related either to applicative research or method development. In the recent years, the focus has shifted almost exclusively to the nano-analytics of advanced materials such as complex nanoparticles, (ultra)thin films/coatings, nanocomposites, 2D materials, energy materials, etc. This is also the reason why BAM has established recently the new Competence Center nano@BAM (www.bam.de/Navigation/DE/Themen/Material/Nanotechnologie/sichere-nanomaterialien.html) with the five sub-fields nanoCharacterisation, nanoMaterial, nanoSafety, nanoData and nanoTechnology. The link to the BAM central guidelines to the safety in technology and chemistry is given by the development of reference products such as reference measurement procedures, reference (nano)materials, and newly reference data sets. Thus, an internationally well-networked group in surface analysis has been established @BAM, with regular contributions to integral analytical characterization with metrological and standardization background. Examples of newly developed methodical approaches will be given with an emphasis on correlative nano-analysis of morphology and chemistry of nanomaterials. Correlative imaging by STEM-in-SEM with high-resolution SEM and EDX, and further with AFM or the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for surface chemistry will be highlighted. The panoply of advanced surface characterization methods @BAM is completed by discussing examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy with the highest surface-sensitive methods X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Particularly for the analysis of the surface chemistry of nanostructures, such as the completeness of the shells of core-shell nanoparticles or in-depth and lateral gradients of chemistry within mesoporous thin layers, the latter methods are inherent. Other special developments like approaches for the quantitative determination of the roughness of particle surface by electron microscopy or for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM will be presented in conjunction with the corresponding advanced materials studied. Current research projects, promising ideas, including ongoing (pre-)standardization activities in the field of the challenging nano/surface analysis will be touched systematically, with the open goal of identifying future bilateral cooperation possibilities between EMPA and BAM. T2 - EMPA-Kolloquium CY - Online meeting DA - 01.12.2021 KW - Nanoparticles KW - Nano@BAM KW - Nanomaterials KW - Surface morphology and chemistry KW - Correlative analysis PY - 2021 AN - OPUS4-54039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Halder, A. A1 - Maiti, A. A1 - Dinda, S. A1 - Bhattacharya, Biswajit A1 - Ghoshal, D. T1 - Unraveling the Role of Structural Dynamism in Metal Organic Frameworks (MOF) for Excited-State Intramolecular Proton Transfer (ESIPT) Driven Water Sensing N2 - Ligand based modification has been performed to synthesize a pair of mixed ligands d10 MOF based materials related to a previously published compound as a base material. The previous compound was a Zn(II)-MOF, {[Zn(4-bpdh)(H2dht)](MeOH)(H2O)}n (1) [N,N′-bis(1-pyridin-4-yl-ethylidene)hydrazine = 4-bpdh and 2,5-dihydroxyterephthalic acid = H4dht], which is a five-fold interpenetrated framework and highly dynamic in nature. In the first synthetic modification, the central metal is replaced by Cd(II), which has the same framework formula as the base material, but this is a rigid compound and also there is no interpenetration in the framework. In the second modification, along with the metal center, the 4,4′- coordinating N,N′-donor ligand is replaced by an isomeric 3,3′-coordinating N,N′- donor linker. In this compound, the dynamism is regenerated. The dynamic nature can be realized by the extensive PXRD studies and characteristic “step-shaped” gas/solvent adsorption behavior for CO2, water, and ethanol. Furthermore, all these 3D MOFs show excited-state intramolecular proton transfer phenomena and water sensing properties in different organic solvents. Here excitingly, the ease of water sensing property is directly related to the dynamic behavior of the framework which has been studied thoroughly in terms of structural correlation. KW - MOFs PY - 2021 DO - https://doi.org/10.1021/acs.cgd.1c00446 SN - 1528-7483 VL - 21 IS - 11 SP - 6110 EP - 6118 PB - ACS Publications AN - OPUS4-53903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Michalchuk, Adam A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit T1 - Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal N2 - Organic single crystals that combine mechanical flexibility and optical properties are important for developing flexible optical devices, but examples of such crystals remain scarce. Both mechanical flexibility and optical activity depend on the underlying crystal packing and the nature of the intermolecular interactions present in the solid state. Hence, both properties can be expected to be tunable by small chemical modifications to the organic molecule. By incorporating a chlorine atom, a reportedly mechanically flexible crystal of (E)-1-(4-bromo-phenyl)iminomethyl-2-hydroxylnaphthalene (BPIN) produces (E)-1-(4-bromo-2-chloro-phenyl)iminomethyl-2-hydroxyl-naphthalene (BCPIN). BCPIN crystals show elastic bending similar to BPIN upon mechanical stress, but exhibit a remarkable difference in their optical properties as a result of the chemical modification to the backbone of the organic molecule. This work thus demonstrates that the optical properties and mechanical flexibility of molecular materials can, in principle, be tuned independently. KW - Elastic Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539040 DO - https://doi.org/10.3390/cryst11111397 VL - 11 IS - 11 SP - 1397 PB - MDPI AN - OPUS4-53904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Tuning the mechanical flexibility of organic molecular crystal by polymorphism for flexible optical waveguide N2 - Crystalline molecular materials are usually brittle and are prone to break into pieces upon external mechanical force. This fragility poses challenges for their application in next-generation technologies, including sensors, synthetic tissues, and advanced opto-electronics. The recent discovery of mechanical flexibility in single crystals of molecular materials has solved this issue and enable the design of smart flexible device technologies. Plastic crystals can be deformed permanently. This behavior is based on anisotropic molecular arrangements and the existence of facile slip planes which allow a permanent motion within the lattice. In contrast, elastic crystals can be deformed, but regain the original structure when the force is removed. This phenomenon is related to energetically isotropic molecular packing. Here we report 4-bromo-6-[(6-chlorolpyridin-2-ylimino)methyl]phenol (BCMPMP) as a promising candidate for future waveguide technologies. It turns out that BCMPMP has two different polymorphs with distinct optical and mechanical properties. Form I crystallizes in the orthorhombic space group Pca21 and shows brittle behavior. This structure exhibit very weak emission at 605 nm (λex = 425 nm) together with a low fluorescence quantum yield (Φ = 0.4 %). On the other hand, form II (monoclinic space group P21/c) has a large plastic regime and a bright emission at 585 nm (λex = 425 nm; Φ = 8.7 %). Based on its improved mechanical and optical properties, form II was explored as a bendable optical waveguide. Light was successfully propagated through a straight-shaped and mechanically deformed BCMPMP crystal. Depending on the light source, active or passive waveguiding could be achieved. So BCMPMP can also be used as a flexible wavelength filter. T2 - International School of Crystallography in Erice CY - Online meeting DA - 30.05.2021 KW - Flexible crystals KW - Polymorphism KW - Waveguide PY - 2021 AN - OPUS4-53905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Polymorphic tuning of a flexible organic crystal optical waveguide N2 - Crystalline molecular materials are usually brittle and are prone to break upon external mechanical force. This fragility poses challenges for their application in next-generation technologies, including sensors, synthetic tissues, and advanced opto-electronics. The recent discovery of mechanical flexibility in single crystals of molecular materials has solved this problem and enable the design of smart flexible device technologies. Mechanical flexibility of organic crystals can be tuned by altering the weak interactions in the crystal structure, for examples through polymorphism. Here we report 4-bromo-6-[(6-chlorolpyridin-2-ylimino)methyl]phenol (BCMPMP) as a promising candidate for future waveguide technologies. It turns out that BCMPMP has two different polymorphs with distinct optical and mechanical properties. Form I shows brittle behavior under mechanical stress and exhibits very weak emission at 605 nm (λex = 425 nm) together with a low fluorescence quantum yield (Φ = 0.4 %).In contrast, Form II has a large plastic (irreversible bending) regime and a bright emission at 585 nm (λex = 425 nm; Φ = 8.7 %). Making use of favorable mechanical fexiblity and optical properties, form II was explored as a bendable optical waveguide. Light was successfully propagated through a straight-shaped and mechanically deformed BCMPMP crystal. Depending on the light source, active or passive waveguiding could be achieved. So BCMPMP can also be used as a flexible wavelength filter. T2 - Congress of the International Union of Crystallography - IUCr 2021 CY - Online meeting DA - 14.08.2021 KW - Flexible crystals KW - Polymorphism KW - Waveguide PY - 2021 AN - OPUS4-53906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Mechanically flexible crystals: materials for new generation of responsive materials N2 - Based on the nature of the deformation, molecular crystals can be defined as being plastically (irreversible) or elastically (reversible)bendable. The mechanical response of crystals is thereby directly related to they structure.The structural elements required for a specific mechanical behavior are known, so that compounds with these properties can be synthesized by applying the rules of crystal engineering. T2 - Berlin Science Week CY - Berlin, Germany DA - 01.11.2021 KW - Flexible crystals PY - 2021 AN - OPUS4-53907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Optimierung der mechanischen Eigenschaften eines organischen Kristalles durch Polymorphismus für die Anwendung als flexibler Waveguide N2 - Kristalle sind in der Regel spröde und neigen dazu, bei mechanischer Belastung zu brechen. Dieses Verhalten schränkt ihre Anwendungsmöglichkeiten stark ein. Durch die Entdeckung von mechanischer Flexibilität in Kristallen wurde dieses Problem gelöst. Je nach Art der Verformung können Kristalle in plastisch (irreversibel) oder elastisch (reversibel) biegbar unterteilt werden. Die Verbindung 4-Brom-6-[(6-chlorpyridin-2-ylimino)methyl]phenol (BCMPMP) ist ein vielversprechender Kandidat für die Anwendung als flexibler Waveguide. BCMPMP hat zwei verschiedene Polymorphe mit unterschiedlichen optischen und mechanischen Eigenschaften. Die spröden Kristalle der Form I zeigen eine sehr schwache Emission bei 605 nm (λex = 425 nm; Photolumineszenz-Quantenausbeute Φ = 0,4 %). Im Gegensatz dazu zeigt die plastische Form II eine starke Emission bei 585 nm (λex = 425 nm; Φ = 8,7 %). Aufgrund der mechanischen Flexibilität wurde die Eignung der Form II als Waveguide untersucht. T2 - Tag der Chemie 2021 CY - Online meeting DA - 06.07.2021 KW - Flexible crystals KW - Polymorphism KW - Waveguide PY - 2021 AN - OPUS4-53908 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement N2 - In order to assess new nanomaterials and nanoparticles for potential risks to health and the environment, they need to be well-characterised. The measurement of constituent nanoparticle size, shape, and size distribution are important factors for the risk evaluation process. EMPIR project Improved traceability chain of nanoparticle size measurements (17NRM04, nPSize) is working to assess a range of traceable nanoparticle measurement approaches, including Electron Microscopy (SEM, TEM, STEM-in-SEM), Atomic Force Microscopy and Small Angle X-ray Scattering, and deliver improved calibration methods to users. For the techniques under investigation, physical models of their response to a range of nanoparticle types are developed. Validated reference materials are also used for inter-comparisons of measurement systems, with an evaluation of the associated measurement uncertainty. With project contributions to standards development work, manufacturers will be better placed to assess the human and environmental risks posed by nanomaterials across a whole range of products. T2 - EMPIR nPSize Training Course "Traceable Characterization of Nanoparticles by SAXS" CY - Online meeting DA - 01.02.2021 KW - Nanoparticles KW - Particle size distribution KW - Traceability KW - nPSize KW - SAXS PY - 2021 AN - OPUS4-53883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Schmidt, R. A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Customizing New Titanium Dioxide Nanoparticles with Controlled Particle Size and Shape Distribution: A Feasibility Study Toward Reference Materials for Quality Assurance of Nonspherical Nanoparticle Characterization N2 - An overview is given on the synthesis of TiO2 nanoparticles with well-defined nonspherical shapes (platelet like, bipyramidal, and elongated), with the focus on controlled, reproducible synthesis, as a key requirement for the production of reference materials with homogeneous and stable properties. Particularly with regard to the nanoparticle shapes, there is a high need of certified materials, solely one material of this type being commercially available since a few months (elongated TiO2). Further, measurement approaches with electron microscopy as the golden method to tackle the nanoparticle shape are developed to determine accurately the size and shape distribution for such nonspherical particles. A prerequisite for accurate and easy (i.e., automated) image analysis is the sample preparation, which ideally must ensure a deposition of the nanoparticles from liquid suspension onto a substrate such that the particles do not overlap, are solvent-free, and have a high deposition density. Challenges in the Synthesis of perfectly monodispersed and solvent-free TiO2 nanoparticles of platelet and acicular shapes are highlighted as well as successful measurement approaches on how to extract from 2D projection electron micrographs the most accurate spatial information, that is, true 3D size, for example, of the bipyramidal nanoparticles with different geometrical orientations on a substrate. KW - Nanoparticles KW - Titanium dioxide KW - Reference materials KW - Standardisation KW - Particle size and shape distribution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538849 DO - https://doi.org/10.1002/adem.202101347 VL - 24 IS - 6 SP - 1 EP - 10 PB - Wiley-VCH AN - OPUS4-53884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Supplementary data set for "Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals" N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that nucleation in the calcium sulfate system is non-classical, involving the aggregation and reorganization of nanosized prenucleation particles. In a recent work we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant single micron-sized CaSO4 crystals. This property of CaSO4 minerals provides us with an unique opportunity to search for evidence of non-classical nucleation pathways in geological environments. In particular, we focused on the quintessential single crystals of anhydrite extracted from the Naica mine in Mexico. We elucidated the growth history from this mineral sample by mapping growth defects at different length scales. Based on these data we argue that the nano-scale misalignment of the structural sub-units observed in the initial calcium sulfate crystal seed propagate through different length-scales both in morphological, as well as strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nanoparticle mediated nucleation mechanism introduces a 'seed of imperfection', which leads to a macroscopic single crystal, in which its fragments do not fit together at different length-scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. But, at the same time the material retains its essential single crystal nature. These findings shed new light on the longstanding concept of crystal structure. KW - Calcium sulfate KW - Mesocrystal KW - Anhydrite PY - 2021 DO - https://doi.org/10.5281/zenodo.4943234 PB - Zenodo CY - Geneva AN - OPUS4-53765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Local corrosion properties of high/medium entropy alloys in aqueous environments N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize some of our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EUROCORR 2020 CY - Online meeting DA - 07.09.2020 KW - High Entropy Alloys KW - Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization PY - 2020 AN - OPUS4-53787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in two different electrolyte systems (NaCl and H2SO4 c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. To analyze the semiconducting properties of the passive film Mott-Schottky analysis was conducted. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX, ICP-MS and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - ISE Annual 72nd meeting CY - Online meeting DA - 29.08.2021 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53789 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of Chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EuroMat 2021 CY - Online meeting DA - 12.09.21 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Corrosion Properties and Protective Oxide Film Characteristics of CrMnFeCoNi High Entropy Alloy and CrCoNi Medium Entropy Alloy N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance due to the higher concentration of Chromium in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - High Entropy Alloys KW - Aqueous Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization KW - Electrochemical Impedance Spectroscopy KW - ICP-MS PY - 2021 AN - OPUS4-53791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana T1 - Recent developments of X-ray absorption spectroscopy as analytical tool for biological and biomedical applications N2 - X-ray absorption spectroscopy (XAS), in its various modalities, has gained exponential attention and applicability in the field of biological and biomedical systems. Particularly in this field, challenges like low concentration of analyte or proneness to radiation damage have certainly settle the basis for further analytical developments, when using X-ray based methods. Low concentration calls for higher sensitivity—by increasing the detection limits (DL); while susceptibility for radiation damage requires shorter measurement times and/or cryogenic sample environment possibilities. This manuscript reviews the latest analytical possibilities that make XAS more and more adequate to investigate biological or biomedical systems in the last 5 years. KW - Biological & biomedical applications KW - TXRF-XAS KW - HERFD-XAS KW - RXES KW - Quick-XAS KW - Dispersive-XAS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531206 DO - https://doi.org/10.1002/xrs.3254 SN - 0049-8246 VL - 51 IS - 3 SP - 1 EP - 10 PB - John Wiley & Sons Ltd AN - OPUS4-53120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Taking Fluorine Interaction to the Extremes using XRD and DFT Simulations N2 - This work aims to investigate the role of F-F and F-π interactions in dictating structural and mechanical properties, through a combination of X-ray powder diffraction and dispersion-corrected density functional. As no benchmarking data exist for F-dominating organic system, we first assess how different functionals affect the mechanical properties of the material. T2 - CRC 1349 Fluorine-Specific Interactions Symposium CY - Online meeting DA - 27.09.2021 KW - High Pressure KW - Fluorine Interaction KW - Hexafluorobenzen KW - Density Functional Theory PY - 2021 AN - OPUS4-53654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -