TY - JOUR A1 - Kieserling, Helena A1 - Sieg, Holger A1 - Heilscher, Jasmin A1 - Drusch, Stephan A1 - Braeuning, Albert A1 - Thünemann, Andreas A1 - Rohn, Sascha T1 - Towards Understanding Particle-Protein Complexes: Physicochemical, Structural, and Cellbiological Characterization of β-Lactoglobulin Interactions with Silica, Polylactic Acid, and Polyethylene Terephthalate Nanoparticles N2 - Nanoplastic particles and their additives are increasingly present in the food chain, interacting with biomacromolecules with not yet known consequences. A protein corona forms around the particles in these usually complex matrices, primarily with a first contact at surface-active proteins. However, systematic studies on the interactions between the particles and proteins –especially regarding protein affinity and structural changes due to surface properties like polarity – are limited. It is also unclear whether the protein corona can "mask" the particles, mimic protein properties, and induce cytotoxic effects when internalized by mammalian cells. This study aimed at investigating the physicochemical properties of model particle-protein complexes, the structural changes of adsorbed proteins, and their effects on Caco-2 cells. Whey protein β-lactoglobulin (β-Lg) was used as a well-characterized model protein and studied in a mixture with nanoparticles of varying polarity, specifically silica, polylactic acid (PLA), and polyethylene terephthalate (PET). The physicochemical analyses included measurements of the hydrodynamic diameter and the zeta potential, while the protein conformational changes were analyzed using Fourier-transform-infrared spectroscopy (FTIR) and intrinsic fluorescence. Cellular uptake in Caco-2 cells was assessed through flow cytometry, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, and cellular impedance was analyzed with xCELLigence® technology. The results indicated that β-Lg had the highest affinity for hydrophilic silica particles, forming silica-β-Lg complexes and large aggregates through electrostatic interactions. The affinity decreased for PLA and was lowest for hydrophobic PET, which formed smaller complexes. Adsorption onto silica caused partial unfolding and refolding of β-Lg. The silica-β-Lg complexes were internalized by Caco-2 cells, impairing cell proliferation. In contrast, PLA- and PET-protein complexes were not internalized, though PLA complexes slightly reduced cell viability. This study enhances our understanding of protein adsorption on nanoparticles and its potential biological effects. KW - Nanoplastics KW - Microplastics KW - Reference materials KW - Scattering KW - DLS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630093 DO - https://doi.org/10.1016/j.colsurfb.2025.114702 SN - 1873-4367 VL - 253 SP - 1 EP - 12 PB - Elsevier BV CY - Amsterdam AN - OPUS4-63009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Böhmert, Linda A1 - Braeuning, Albert A1 - Lampen, Alfonso A1 - Thünemann, Andreas T1 - Fate of fluorescence labels - Their adsorption and desorption kinetics to silver nanoparticles N2 - Silver nanoparticles are among the most widely used and produced nanoparticles. Because of their frequent application in consumer products, the assessment of their toxicological potential has seen a renewed importance. A Major difficulty is the traceability of nanoparticles in in vitro and in vivo experiments. Even if the particles are labeled, for example, by a fluorescent marker, the dynamic exchange of ligands often prohibits their spatial localization. Our study provides an insight into the adsorption and desorption kinetics of two different fluorescent labels on silver nanoparticles with a core radius of 3 nm by dynamic light scattering, small-angle X-ray scattering, and fluorescence spectroscopy. We used BSA-FITC and tyrosine as examples for common fluorescent ligands. It is shown that the adsorption of BSA-FITC takes at least 3 days, whereas tyrosine adsorbs immediately. The quantitative amount of stabilizer on the particle surface was determined by fluorescence spectroscopy and revealed that the particles are stabilized by a monolayer of BSA-FITC (corresponding to 20 ± 9 molecules), whereas tyrosine forms a multilayered structure consisting of 15900 ± 200 molecules. Desorption experiments show that the BSA-FITC-stabilized particles are ideally suited for application in in vitro and in vivo experiments because the ligand desorption takes several days. Depending on the BSA concentration in the particles surroundings, the rate constant is k = 0.2 per day or lower when applying first order kinetics, that is, 50% of the BSAFITC molecules are released from the particle’s surface within 3.4 days. For illustration, we provide a first application of the fluorescence-labeled particles in an uptake study with two different commonly used cell lines, the human liver cell model HepG2 and the human intestinal cell model of differentiated Caco-2 cells. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Silver nanoparticles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452166 DO - https://doi.org/10.1021/acs.langmuir.8b01305 SN - 1520-5827 SN - 0743-7463 VL - 34 IS - 24 SP - 7153 EP - 7160 PB - American Chemical Society AN - OPUS4-45216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Maxi B. A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Loeschner, Katrin A1 - Givelet, Lucas A1 - Fahrenson, Christoph A1 - Braeuning, Albert A1 - Sieg, Holger T1 - Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics N2 - The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles. KW - Toxicology KW - Nanoparticles KW - Dynamic Light Scattering KW - Nanoplastics KW - Microplastics KW - Reference Method KW - Reference Material PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593947 DO - https://doi.org/10.1016/j.fct.2023.114423 SN - 0278-6915 VL - 184 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-59394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, Holger A1 - Schaar, Caroline A1 - Fouquet, Nicole A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Braeuning, Albert T1 - Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells N2 - Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded. KW - Toxicology KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593935 DO - https://doi.org/10.1016/j.tiv.2024.105772 VL - 96 SP - 1 EP - 12 PB - Elsevier BV AN - OPUS4-59393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -