TY - CONF A1 - Bresch, Harald T1 - Standard Operating Procedures in the digital context N2 - The intention of the presentation is to inspire a discussion on the needs and challenges for the digitalisation of SOPs. SOPs are available for the disciplines of physical-chemical characterisation, for toxicology, for environmental applications and for exposure applications. Furthermore the SOPs need to be integrated in the regulatory framework and need to be detailed enough for the digital processing. This is highlighted in this presentation. T2 - Nanosafety 2020 CY - Online meeting DA - 07.10.2020 KW - Nano KW - SOP KW - NFDI KW - Digitalisation KW - Operating Procedure PY - 2020 AN - OPUS4-51491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Hutzler, C. A1 - Wilke, Olaf A1 - Luch, A. T1 - Emissions of volatile organic compounds from polymer-based consumer products: comparison of three emission chamber sizes N2 - The ISO 16000 standard series provide guidelines for emission measurements of volatile organic compounds (VOCs) from building materials. However, polymer-based consumer products such as toys may also release harmful substances into indoor air. In such cases, the existing standard procedures are unsuitable for official control laboratories due to high costs for large emission testing chambers. This paper aims at developing and comparing alternative and more competitive methods for the emission testing of consumer products. The influence of the emission chamber size was investigated as smaller chambers are more suited to the common size of consumer products and may help to reduce the costs of testing. Comparison of the performance of a 203 l emission test chamber with two smaller chambers with the capacity of 24 l and 44 ml, respectively, was carried out by using a polyurethane reference material spiked with 14 VOCs during the course of 28 days. The area-specific emission rates obtained in the small chambers were always similar to those of the 203 l reference chamber after a few hours. This implies that smaller chambers can provide at least useful numbers on the extent of polymer-based consumer product emissions into indoor air, thereby supporting meaningful exposure assessments. KW - Comparison KW - Consumer products KW - Emission chamber KW - Reference material KW - Volatile organic compounds PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-493697 DO - https://doi.org/10.1111/ina.12605 VL - 30 IS - 1 SP - 40 EP - 48 PB - Wiley VCH-Verlag AN - OPUS4-49369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nanomaterial characterisation - The long way to standardisation N2 - In 1981 the OECD published the Test Guideline on Particle size and size distribution. This TG is still a valid document for the measurement of particles all over the world. When nanomaterials gained importance, ISO set up a technical commitee for Nanotechnologies in 2005 and the OECD followed this step in 2006 with the Working Party on Manufactured Nanomaterials. In the following years ISO and OECD published several documents about nanomaterials and the systematisation developed. In 2017 it was finally clear that nanomaterials need to be adressed in another way than chemicals and in 2020 ECHA revised the REACH-Annexes accordingly and included nanomaterials. Unfortunately there is a little problem with this: Only a few applicable test guidelines exit for the measurement of the nanomaterials. Several test guidelines date from 1981 and do not address nanomaterials. The logical next step for the OECD would be to publish a series of test guidelines which are indeed currently prepared and will be shown in this talk. Finally there is an additional need for the future of NM standardisation: Digitalisation. T2 - Bilateral workshop with Uni Bermingham CY - Online meeting DA - 10.03.2021 KW - Nano KW - Standardisation KW - Test guideline KW - OECD KW - Nanomaterial PY - 2021 AN - OPUS4-53822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Development of a specific OECD Test Guideline on Particle Size and Particle Size Distribution of Nanomaterials N2 - In this research project, a new OECD Test Guideline (TG) for the determination of “Particle Size and Particle Size Distributions of Nanomaterials” was developed as the existing OECD TG 110 is considered to be outdated in terms of applicable size range (not covering sizes <200 nm) and methods. By its scope with an applicable size range from 1 to 1000 nm the new Test Guideline (TG PSD) covers the whole nanoscale. The TG PSD is applicable for particulate and fibrous nanomaterials. The prescribed, pairwise measurement of fibre diameter and length in the TG PSD allows for the first time to differen-tiate fibres with regard to their size-dependent hazard properties. Measurement instructions for each included method were validated within two separated interlaboratory comparisons, as a distinction between near spherical particles and fibres when applying the methods has to be made. Besides information on content and structure of the TG PSD, this final report outlines essential steps, considerations and organisational aspects during the development of the TG. Insights into the selec-tion, preparation and prevalidation of test materials used in the interlaboratory comparison are given. Finally, main results of the interlaboratory comparisons and their impacts on the TG PSD are pre-sented. N2 - Im Rahmen des Forschungsprojekts wurde eine neue OECD-Prüfrichtlinie (TG) für die Bestimmung von Partikelgrößen und Partikelgrößenverteilungen von Nanomaterialien entwickelt, da die existie-rende OECD TG 110 zur Bestimmung von Partikelgrößen in Bezug auf den anwendbaren Größenbe-reich und die gegebenen Methoden veraltet ist bzw. den Nanometerbereich < 200 nm nicht abdeckt. Mit ihrem Anwendungsbereich von 1 bis 1000 nm deckt die neue Prüfrichtlinie (TG PSD) die gesamte Nanoskala ab. Die TG PSD ist für partikel- und faserförmige Nanomaterialien anwendbar. Durch die, in der TG PSD vorgeschriebene, paarweise Messung von Faserdurchmesser und -länge ermöglicht diese TG zum ersten Mal Fasern hinsichtlich ihrer größenabhängigen Gefahrstoffeigenschaften zu unter-scheiden. Die Messanweisungen aller enthaltenen Methoden wurden im Rahmen von zwei getrennten Ringversuchen validiert, da bei der Anwendung der Methoden eine Unterscheidung zwischen Parti-keln und Fasern gemacht werden muss. Neben Angaben zum Inhalt und Struktur der TG PSD, befasst sich der vorliegende Abschlussbericht mit den wesentlichen Schritten, Überlegungen und organisatorischen Aspekten bei der Entwicklung der Prüfrichtlinie. Darüber hinaus werden Einblicke in die Auswahl, Vorbereitung und Prävalidierung der im Ringversuch verwendeten Testmaterialien gegeben. Schließlich werden die wichtigsten Ergeb-nisse aus den Ringversuchen und ihre Auswirkungen auf die TG PSD vorgestellt. KW - Nano KW - OECD KW - Particle size distribution KW - Testguideline KW - Nanoparticle PY - 2021 VL - 2021 SP - 1 EP - 47 PB - German Environment Agency CY - Dessau AN - OPUS4-54021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Size matters! - Auf dem Weg zu einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien N2 - Vorstellung der Ergebnisse bei der Entwicklung einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien. Ergebnisse: Ideal sphärische Partikel sind gut und verlässlich mit vielen Methoden charakterisierbar. Reale (Nicht ideale) Materialien sind gut charakterisierbar, wenn eine gewisse Homogenität und Stabilität vorliegt. Stark inhomogene und stark agglomerierende Partikel liefern deutlich unterschiedliche Ergebnisse für verschiedene Methoden. Partikel mit geringen Größenunterschieden lassen sich mit allen Methoden gut charakterisieren. Partikel mit sehr deutlichen Größenunterschieden führen häufig zu einer Unterbewertung der kleineren Partikel. Vollautomatische Partikeldetektion bei elektronenmikroskopischen Aufnahmen ist z.Zt. noch stark fehleranfällig und kann daher nicht empfohlen werden. Es hat sich gezeigt, dass alle Methoden zur Bestimmung der Partikelgrößenverteilung Vor- und Nachteile haben. Es ist dringend zu empfehlen Größenverteilungen immer mit mindestens zwei unterschiedlichen Methoden zu bestimmen: Bildgebend und mit gute Anzahlstatistik. Verschiedene Durchmesser wurden in der TG-PSD mit einem Indexsystem versehen, welches zukünftig Verwechslungen zwischen unterschiedlichen Durchmessern vermeiden soll. Wird ein bestimmter Durchmesser benötigt (z.B. hydrodynamisch, aerodynamisch), muss die Methode passend gewählt werden. Eine Umrechnung von einem Durchmesser in einen anderen ist in der Regel fehlerbehaftet. Es wurde ein einheitliches Reporting-System in der TG-PSD eingeführt. T2 - Fachseminar des Umweltbundesamtes CY - Online meeting DA - 14.04.2021 KW - Nano KW - OECD KW - Prüfrichtlinie KW - Nanomaterial KW - BMU PY - 2021 AN - OPUS4-53823 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuhlbusch, T. A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. T1 - Size matters! - Auf dem Weg zu einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien _ Projektteil BAuA N2 - Vorstellung der Ergebnisse bei der Entwicklung einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien. (Projektteil Fasern.) Ergebnisse: Abweichungen zwischen SEM and TEM insbesondere bei langen Fasern Die Anwendung von TEM auf kurze Fasern < 5 µm beschränkt Für SEM wurde keine signifikante Abhängigkeit der Bestimmung der Faserdurchmesser von der Pixelgröße der Aufnahmen festgestellt Für TEM wurde eine Abhängigkeit der Bestimmung der Faserdurchmesser von der Pixelgröße festgestellt Der Einfluss der Bildauswertenden auf die Varianz der Ergebnisse ist klein im Vergleich zu der gesamten Varianz. Nanofasern können mit TEM und SEM bestimmt werden! T2 - Fachseminar des Umweltbundesamtes CY - Online meeting DA - 14.04.2021 KW - Nano KW - Nanofasern KW - OECD KW - Prüfrichtlinie KW - Nanomaterial PY - 2021 AN - OPUS4-53824 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien N2 - Abschlusspräsentation des Projektes "OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien" - Projektteil Nanopartikel. Es hat sich gezeigt, dass alle Methoden zur Bestimmung der Partikelgrößenverteilung Vor- und Nachteile haben. Es wird dringend empfohlen Größenverteilungen immer mit mindestens zwei unterschiedlichen Methoden zu bestimmen: Bildgebend und mit gute Anzahlstatistik. Verschiedene Durchmesser wurden in der TG-PSD mit einem Indexsystem versehen, welches zukünftig Verwechslungen zwischen unterschiedlichen Durchmessern vermeiden soll. Wird ein bestimmter Durchmesser benötigt (z.B. hydrodynamisch, aerodynamisch), muss die Methode passend gewählt werden. Eine Umrechnung von einem Durchmesser in einen anderen ist in der Regel fehlerbehaftet. Es wurde ein einheitliches Reporting-System in der TG-PSD eingeführt. T2 - Fachgespräch zur OECD - TG PSD - BMU BMWi BAM BAuA UBA CY - Online meeting DA - 10.09.2021 KW - Nano KW - OECD KW - Nanopartikel KW - Prürfrichtlinie KW - Nanomaterial PY - 2021 AN - OPUS4-53825 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuhlbusch, T. A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. T1 - OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien - Projektteil Fasern N2 - Abschlusspräsentation des Projektes "OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien". (Projektteil Fasern) T2 - Fachgespräch zur OECD - TG PSD - BMU BMWi BAM BAuA UBA CY - Online meeting DA - 10.09.2021 KW - Nano KW - Nanofasern KW - OECD KW - Prüfrichtlinie KW - Nanomaterial PY - 2021 AN - OPUS4-53826 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Draft OECD Test Guideline for the Testing of Chemicals - Particle Size and Particle Size Distribution of Nanomaterials N2 - Final Draft of the OECD Test Guideline for Particle Size and Particle Size Distribution of Nanomaterials. The OECD Working Party on Manufactured Nanomaterials (WPMN) has actively worked towards understanding possible safety issues for manufactured nanomaterials and has contributed significantly to resolving these by developing Test Guidelines, Guidance Documents, Test Reports and other publications with the aim of a safe use of manufactured nanomaterials. The OECD website (www.oecd.org/science/nanosafety) and the referenced publications contain more background information. Among others, the OECD Test Guideline “Particle Size Distribution/Fibre Length and Diameter Distributions” (TG 110, adopted in 1981) was identified to require an update to address the specific needs of manufactured nanomaterials as the TG 110 is currently only valid for particles and fibres with sizes above 250 nm. The WPMN prioritised to either update TG 110 to be applicable also to particles at the nanoscale or draft a new nanomaterial specific Test Guideline (TG). Eventually, it was decided to develop a new TG for particle size and particle size distribution measurements of nanomaterials covering the size range from 1 nm to 1000 nm for further justification. This TG overlaps with TG 110 in the size range from 250 nm to 1000 nm. When measuring particulate or fibrous materials, the appropriate TG should be selected depending on the size range of particles tested. In line with TG 110, the new TG for nanomaterials includes separate parts for particles and fibres. For the part of this TG which addresses particles, several methods applicable to nanomaterials were reviewed and included to take into account developments since 1981 when the TG110 was adopted. This TG includes the following methods: Atomic Force Microscopy (AFM), Centrifugal Liquid Sedimentation (CLS)/Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Differential Mobility Analysis System (DMAS), (Nano)Particle Tracking Analysis (PTA/NTA), Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). For measuring the diameter and length of fibres, analysing images captured with electron microscopy is currently the only method available. This TG includes Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To test the validity of this TG, an ILC was performed. Test materials were chosen to reflect a broad 68 range of nanomaterial classes, e.g. metals, metal oxides, polymers and carbon materials. Where possible, well-characterised test materials were used. Additionally, the test materials were chosen, so that they reflect a broad range of sizes representing the size range 1 nm to 1000 nm and finally, for fibres only, aspect ratios from length/diameter of 3 to > 50. KW - Nano KW - OECD KW - Test guideline KW - Nanomaterial KW - Nanoparticle PY - 2021 UR - https://www.oecd.org/chemicalsafety/testing/draft-test-guideline-particle-size-distribution-nanomaterials.pdf SP - 1 PB - Organisation for Economic Co-operation and Development CY - Paris AN - OPUS4-53828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seneschal-Merz, Karine A1 - Bücker, Michael A1 - Wachtendorf, Volker A1 - Heidrich, Christa A1 - Sander, Christoph T1 - New UV-protective glazing for the conservation of cultural assets N2 - For centuries, churches, secular buildings and museums have been furnished with valuable works of art. Many works of art are UV- and light-sensitive. It is well known that especially UV radiation causes damage and discoloration in paintings, textiles, plastics, wood and other materials. In particular, the wavelengths between 280 and 410 nm cause color changes, embrittlement or destruction of e.g. plastics over time. Therefore, strongly UV-absorbing glasses are advantageous for architecture and are necessary for the protection of cultural assets. As restorers in all disciplines become more and more aware, the demands placed on buildings and their furnishings in terms of climate are becoming increasingly detailed and precise. The aim in each case is to preserve the valuable artwork. For some years now, the industry has been offering the protection of cultural objects by installing special UV-protective glasses. Currently, UV protection for church buildings is realized by laminated safety glass equipped with appropriate UV-protective plastic films. Technically, this always means a second pane of glass in front of the windows, which is installed outside the building. This creates climatic gaps that are difficult to control and deterioration due to ageing effects can be expected. At the same time, this protective glazing is not invisible and has a considerable aesthetic influence on the interior and exterior appearance of the building. Meanwhile, the preservation of historical monuments accepts such aesthetic cuts on buildings in order to protect the artwork in the interior from UV light. To this day, however, the long-term durability of UV protection provided by inserted plastic films is still controversial. To date the only available alternative on the market is a mouth-blown UV protection glass which uses a so-called overlay to provide UV protection. This shows that UV protection can also be achieved by glasses without plastic films thus realizing an exclusive inorganic protection which normally is more stable than a polymeric one. So far there are not enough studies to prove long-term durability. The aim of this project is to provide existing glazing or new glazing to be created with a highly transparent layer that ensures this UV-protective filter function below 400 nm. The glass coating is to be applied to the glass over a large area and fired into the surface like a classic ceramic enamel paint with the same technics. In addition, it should be long-term durable in its function. It means, that the glass has to be fused at temperatures below 630 °C during the firing process, its chemical durability has to be high, its coefficient of thermal expansion has to be as close as the one of the substrate (usually float glass) and the glass has to absorb the UV-radiation within a thin thickness (thinner as 100 µm). In this project, the long-term durability of commercial UV-protective glasses is examined. New low melting glasses containing UV-absorbing ions are being developed. Their UV-absorption as a thin layer is analyzed as well as their chemical durability and their thermal properties. We are grateful to BMWI for the financial support in the frame of the Central Innovation Programme for SMEs (ZIM). T2 - HVG-DGG: 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Glass KW - Low melting KW - Chemical durability KW - Weathering tests KW - Aging test KW - UV absorption KW - UV protection KW - Architecture KW - Optical properties PY - 2021 AN - OPUS4-52648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Olaf A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Jann, Oliver T1 - Volatile organic compounds from building products - Results from six round robin tests with emission test chambers conducted between 2008 and 2018 N2 - Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories, their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test (round robin test, RRT) every two years using well-characterized test materials (one sealant, one furniture board, and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 36 VOCs were included of which 33 gave test chamber air concentrations between 13 and 83 µg/m3. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Three compounds had higher concentrations between 326 and 1105 µg/m3. In this paper, the relative standard deviations (RSD) of BAM round robin tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 28 % in 2018. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51 %. KW - Construction product KW - Emission test chamber KW - Interlaboratory comparison KW - Proficiency testing KW - Rround robin test KW - VOC emission PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526139 DO - https://doi.org/10.1111/ina.12848 VL - 31 IS - 6 SP - 2049 EP - 2057 PB - Wiley AN - OPUS4-52613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf T1 - Contaminants of Emerging Concern from Materials and Products: Measurement and Evaluation N2 - Test chamber measurements are an important tool to improve indoor air quality and occupational safety. Test chamber measurements are possible for a wide range of materials, products and technologies. Determination of concerning contaminants is important to ensure good indoor air quality. The detection of concerning contaminants depends on the approriate sampling and analysis. T2 - Webinar BAM-University of Birmingham CY - Online meeting DA - 24.02.2021 KW - Emerging Contaminants KW - Emission Test Chamber KW - Thermal Extraction KW - Thermal Desorption PY - 2021 AN - OPUS4-52262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf T1 - Harmonised test standard EN 16516 - common approach for all building products for interiors N2 - The presentation gives general information about the European Standard EN 16516 “Construction products – Assessment of release of dangerous substances – Determination of emissions into indoor air”. This test standard was developed based on the mandate M/366 of the European commission and is a horizontal reference method for the determination of volatile organic compounds (VOC) from different classes of construction (building) products. Specific test conditions are to be selected by the product TCs (technical committees) in a way that a product is tested under its intended condition of use. The test is based on the use of emission test chambers which are operated at constant air change rate and climate (23°C, 50 % r.h.) over 28 days. The standard defines the conditions and requirements for the measurement including loading factor, air change rate, sampling, analysis and calculation of emission rates of the substances. A 30 m³ reference room is described which is used to calculate air concentrations from the determined emission rates. The standard EN 16516 enables the evaluation of construction products regarding their emissions into indoor air under defined and comparable conditions. The evaluation includes the determination of identified target compounds, non-identified target compounds, volatile carcinogenic compounds and the sum values TVOC, TSVOC and R. T2 - UBA Conference - Limiting health impacts of construction products regarding VOC CY - Online meeting DA - 20.04.2021 KW - Building products KW - EN 16516 KW - Emisson testing KW - Construction products PY - 2021 AN - OPUS4-58079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kochovski, Z. A1 - Feldmann, Ines A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Ni- and Co-Struvites: Revealing Crystallization Mechanisms and Crystal Engineering toward Applicational Use of Transition Metal Phosphates N2 - Industrial and agricultural waste streams (waste water, sludges, tailings, etc.) which contain high concentrations of NH4+, PO43–, and transition metals are environmentally harmful and toxic pollutants. At the same time, phosphorous and transition metals constitute highly valuable resources. Typically, separate pathways have been considered to extract hazardous transition metals or phosphate independently from each other. Investigations on the simultaneous removal of multiple components have been carried out only to a limited extent. Here, we report the synthesis routes for Ni- and Co-struvites (NH4MPO4·6H2O, M = Ni2+ and Co2+), which allow for P, ammonia, and metal co-precipitation. By evaluating different reaction parameters, the phase and stability of transition metal struvites as well as their crystal morphologies and sizes could be optimized. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P) ratios, whereas Co-struvite only forms at low M/P ratios. Detailed investigations of the precipitation process using ex situ and in situ techniques provided insights into the crystallization mechanisms/crystal engineering of these materials. M-struvites crystallize via intermediate colloidal amorphous nanophases, which subsequently aggregate and condense to final crystals after extended reaction times. However, the exact reaction kinetics of the formation of a final crystalline product varies significantly depending on the involved metal cation in the precipitation process: several seconds (Mg) to minutes (Ni) to hours (Co). The achieved level of control over the morphology and size makes precipitation of transition metal struvites a promising method for direct metal recovery and binding them in the form of valuable phosphate raw materials. Under this paradigm, the crystals can be potentially up-cycled as precursor powders for electrochemical or (electro)catalytic applications, which require transition metal phosphates. KW - Crystallization KW - Struvite KW - Nickel KW - Cobalt KW - Phosphorous recovery KW - Up-cycling KW - Aqueous synthesis PY - 2022 DO - https://doi.org/10.1021/acs.cgd.2c00284 VL - 22 IS - 7 SP - 4305 EP - 4315 PB - ACS Publications CY - Washington D.C. AN - OPUS4-55286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Test Guideline No. 125 - Nanomaterial Particle Size and Size Distribution of Nanomaterials N2 - The OECD Working Party on Manufactured Nanomaterials (WPMN) has actively worked towards understanding possible safety issues for manufactured nanomaterials and has contributed significantly to resolving these by developing Test Guidelines, Guidance Documents, Test Reports and other publications with the aim of a safe use of manufactured nanomaterials. To address the specific needs of manufactured nanomaterials, the OECD Test Guideline No. 110 “Particle Size Distribution/Fibre Length and Diameter Distributions” was identified as one of the test guidelines (TGs) to require an update. The current TG 110 (adopted in 1981) is only valid for particles and fibres with sizes above 250 nm. The WPMN prioritised to either update TG 110 to be applicable also to particles at the nanoscale or draft a new nanomaterial specific (TG). Eventually, it was decided to develop a new TG that covers the size range from 1 nm to 1000 nm, intended for particle size and particle size distribution measurements of nanomaterials. Paragraph 11 provides further justification on the need for such measurements for nanomaterials. This TG overlaps with TG 110 in the size range from 250 nm to 1000 nm. When measuring particulate or fibrous materials, the appropriate TG should be selected depending on the size range of particles tested. In line with TG 110, the new TG for nanomaterials includes separate parts for particles and fibres. For the part of this TG which addresses particles, several methods applicable to nanomaterials were reviewed and included to take into account developments since 1981 when the TG 110 was adopted. This TG includes the following methods: Atomic Force Microscopy (AFM), Centrifugal Liquid Sedimentation (CLS)/Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Differential Mobility Analysis System (DMAS), (Nano)Particle Tracking Analysis (PTA/NTA), Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The method Single Particle Inductively Coupled Plasma Mass Spectrometry (sp-ICP-MS) could not be sufficiently validated within the interlaboratory comparison (ILC) carried out for the different methods in this TG (see also paragraph 6 for further details on the ILC). Applicability of sp-ICP-MS is strongly limited to nanomaterials with high mass values in combination with a sufficiently high particle size. However, the general method ICP-MS is widely used and the sp-mode for the size measurement of specific nanomaterials was successfully performed in ILCs elsewhere. The method is therefore included in the Appendix Part C of this TG, which further details the limitations of sp-ICP-MS. For measuring the diameter and length of fibres, analysing images captured with electron microscopy is currently the only method available. This TG includes Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To test the validity of this TG, an ILC was performed. Test materials were chosen to reflect a broad range of nanomaterial classes, e.g. metals, metal oxides, polymers and carbon materials. Where possible, well-characterised test materials were used. Additionally, the test materials were chosen to reflect a broad range of sizes representing the size range 1 nm to 1000 nm. Specifically for fibres, a broad range of aspect ratios was included (length/diameter of 3 to > 50). Some of the test materials used are commercially available and further references are given in the validation report of the ILC. Sample preparation for physical chemical characterisation is critical for all listed methods. Due to the differences between individual nanomaterials and due to the wide range of individual material properties it is impossible to have a generic protocol to obtain the best possible sample preparation for every nanomaterial. Therefore, a generic protocol on sample preparation is not part of this TG. Information on sample preparation is given in the paragraphs 25-29, 33, 34 and 39 for particles and in paragraphs 159) for fibres. Further information on sample preparation of nanomaterials for physical chemical characterisation can be found in the OECD Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials and elsewhere. KW - Nano KW - Nanomaterial KW - Nanoparticle KW - OECD KW - Test guideline PY - 2022 DO - https://doi.org/10.1787/20745753 SP - 1 EP - 72 PB - Organisation for Economic Co-operation and Development CY - Paris AN - OPUS4-55191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Feldmann, Ines A1 - Emmerling, Franziska T1 - Mix and wait – a relaxed way for synthesizing ZIF-8 N2 - Herein we report the synthesis of a zeolitic imidazolate framework (ZIF-8) by an easy “mix and wait” procedure. In a closed vial, without any interference, the mixture of 2-methylimidazole and basic zinc carbonate assembles into the crystalline product with approx. 90% conversion after 70 h. The reaction exhibits sigmoidal kinetics due to the self-generated water which accelerates the reaction. KW - In-situ analysis KW - Mechanochemistry KW - MOF KW - Synthesis KW - ZIF-8 PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546841 DO - https://doi.org/10.1039/D2RA00740A VL - 12 SP - 8940 EP - 8944 PB - Royal Society of Chemistry AN - OPUS4-54684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - Schwerpunktthema nano@BAM – Projekt Nanoplattform N2 - Darstellung der Digitalisierung im Rahmen des Themenfeldprojektes Nanoplattform. Es werden beleuchtet: BAM-DataStore, Voraussetzungen für ELNs, Möglichkeitenvon OpenBIS, NFDI-Antrag InnoMatSafety, Digitalisierung von Workflows. T2 - BAM Beiratssitzung Umwelt CY - Online meeting DA - 11.03.2022 KW - Nano KW - Elektronisches Laborbuch KW - Workflows KW - Digitalisierung KW - Standardarbeitsanweisungen PY - 2022 AN - OPUS4-56756 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimmer, Christoph A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Constant emitting reference material for material test procedures N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. VOC in combination may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. Emission concentrations can become further elevated in new or refurbished buildings where the rate of air exchange with fresh ambient air may be limited due to improved energy saving aspects. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use (building) materials proved to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable emission reference materials (ERM). For the emission test chamber procedure according to EN 16516, no artificial ERM is commercially available. The EU-funded EMPIR project MetrIAQ aims to fill this gap by developing new and improved ERMs. The goal is to obtain a material with a reproducible and temporally constant compound release (less than 10% variability over 14 days). Different approaches, such as the impregnation of porous materials, are being tested. The generation as well as results of the most promising materials will be presented. T2 - Airmon 2022 CY - Bristol, UK DA - 07.11.2022 KW - Emission reference materials KW - Emission test chamber procedure KW - Quality assurance KW - Reference material PY - 2022 AN - OPUS4-56575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as Certified Reference Material for Size and Shape N2 - BAM is currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance to the material and life sciences. As a first candidate of this series, we present cubic iron oxide nanoparticles with a nominal edge length of 8 nm. These particles were synthesized by thermal decomposition of iron oleate in high boiling organic solvents adapting well-known literature procedures. After dilution to a concentration suitable for electron microscopy (TEM and SEM) as well as for small-angle X-ray scattering (SAXS) measurements, the candidate nanoRM was bottled and assessed for homogeneity and stability by both methods following the guidelines of ISO 17034 and ISO Guide 35. The particle sizes obtained by both STEM-in-SEM and TEM are in excellent agreement with a minimum Feret of 8.3 nm ± 0.7 nm. The aspect ratio (AR) of the iron oxide cubes were extracted from the images as the ratio of minimum Feret to Feret resulting in an AR of 1.18 for TEM to 1.25 for SEM. Alternatively, a rectangular bounding box was fitted originating from the minimum Feret and the longest distance through the particle in perpendicular direction. This led to AR values of 1.05 for TEM and 1.12 for SEM, respectively. The results confirm the almost ideal cubic shape. KW - Reference nanoparticles KW - Iron oxide KW - Cubical shape KW - Electron microscopy KW - SAXS KW - Nano CRM KW - Size PY - 2022 DO - https://doi.org/10.1017/S1431927622003610 SN - 1435-8115 VL - 28 IS - Suppl. 1 SP - 802 EP - 805 PB - Cambridge University Press AN - OPUS4-55599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -