TY - JOUR A1 - Munzke, Dorit A1 - Kraus, David A1 - Eisermann, René A1 - Kübler, Stefan A1 - Schukar, Marcus A1 - Nagel, Lukas A1 - Hickmann, Stefan A1 - Trappe, Volker T1 - Distributed fiber-optic strain sensing with millimeter spatial resolution for the structural health monitoring of multiaxial loaded GFRP tube specimens JF - Polymer Testing N2 - Due to their high strength-to-weight ratio and excellent fatigue resistance, glass fiber reinforced polymers (GFRP) are used as a construction material in a variety of applications including composite high-pressure gas storage vessels. Thus, an early damage detection of the composite material is of great importance. Material degradation can be determined via measuring the distributed strain profile of the GFRP structures. In this article, swept wavelength interferometry based distributed strain sensing (DSS) was applied for structural health monitoring of internal pressure loaded GFRP tube specimens. Measured strain profiles were compared to theoretical calculation considering Classical Lamination Theory. Reliable strain measurements with millimeter resolution were executed even at elongations of up to 3% in the radial direction caused by high internal pressure load. Material fatigue was localized by damaged-induced strain changes during operation, and detected already at 40% of burst pressure. KW - GFRP KW - Swept wavelength interferometry KW - Distributed fiber optic sensing KW - Material degradation KW - Structural health monitoring PY - 2019 DO - https://doi.org/10.1016/j.polymertesting.2019.106085 SN - 0142-9418 VL - 80 SP - 106085 PB - Elsevier Ltd. AN - OPUS4-48950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schukar, Marcus A1 - Munzke, Dorit A1 - Duffner, Eric A1 - Eisermann, René A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Strohhäcker, J. A1 - Mair, Georg T1 - Monitoring of type IV composite pressure vessels with multilayer fully integrated optical fibre based distributed strain sensing N2 - We present the results of distributed fibre optic strain sensing for condition monitoring of a hybrid type IV composite overwrapped pressure vessel using multilayer integrated optical fibres. During load cycle tests material fatigue could be localised and monitored 17000 load cycles before burst. T2 - TAHYA Workshop "Structural health monitoring" CY - Berlin, Germany DA - 27.11.2019 KW - Distributed fibre optic sensing KW - Hybrid composite pressure vessel KW - Structural health monitoring PY - 2019 AN - OPUS4-49996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Munzke, Dorit A1 - Duffner, Eric A1 - Eisermann, René A1 - Schukar, Marcus A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Strohhäcker, J. A1 - Mair, Georg T1 - Monitoring of type IV composite pressure vessels with multilayer fully intregrated optical fibre based distributed strain sensing N2 - We present the results of distributed fibre optic strain sensing for condition monitoring of a hybrid type IV composite fully wrapped pressure vessel using multilayer integrated optical fibres. During load cycle tests material fatigue could be localised and monitored 17,000 load cycles before burst. Results have been validated by acoustic emission analysis. T2 - 12th International Conference on Composite Science and Technology CY - Sorrento, Italy DA - 08.05.2019 KW - Hybrid composite pressure vessel KW - Distributed fibre optic sensing KW - Acoustic emission analysis KW - Structural health monitoring PY - 2019 AN - OPUS4-47995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -