TY - JOUR A1 - Nadammal, Naresh A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Kromm, Arne A1 - Seyfert, Christoph A1 - Farahbod, Lena A1 - Haberland, Christoph A1 - Schneider, Judith Ann A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718 N2 - In the present study, samples fabricated by varying the deposition hatch length during selective laser melting of nickel based superalloy Inconel 718 were investigated. Microstructure and texture of these samples was characterized using scanning electron microscopy, combined with electron back-scattered diffraction, and residual stress assessment, using neutron diffraction method. Textured columnar grains oriented along the sample building direction were observed in the shorter hatch length processed sample. A ten-fold increase in the hatch length reduced the texture intensity by a factor of two attributed to the formation of finer grains in the longer hatch length sample. Larger gradients of transverse residual stress in the longer hatch length sample were also observed. Along the build direction, compressive stresses in the shorter hatch length and negligible stresses for the longer hatch length specimen were observed. Changes to the temperature gradient (G) in response to the hatch length variation, influenced the G to growth rate (R) ratio and the product G × R, in agreement with the microstructures and textures formed. For the residual stress development, geometry of the part also played an important role. In summary, tailored isotropy could be induced in Inconel 718 by a careful selection of parameters during selective laser melting. KW - Additive manufacturing KW - Nickel-based superalloy KW - Microstructure and texture KW - Residual stress KW - Electron back-scattered diffraction KW - Neutron diffraction PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0264127517308018 DO - https://doi.org/10.1016/j.matdes.2017.08.049 SN - 0264-1275 VL - 134 SP - 139 EP - 150 PB - Elsevier CY - Oxford, UK AN - OPUS4-41606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy T1 - A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration N2 - Using continuum damage mechanics (CDM) for lifetime prediction requires numerical integration of evolving damage until the onset of failure. The primary challenge for the simulation of structural fatigue failure is caused by the enormous computational costs due to cycle-by-cycle temporal integration throughout the whole loading history, which is in the order of 103–107 cycles. As a consequence, most approaches circumvent this problem and use empirical methods such as Wöhler curves. They are well suited for approximating the lifetime, but they are not capable to capture a realistic degradation of the material including redistribution of stresses. The main objective of the paper is to provide a technique for finite element (FE) simulations of structures under fatigue loading while reducing computational costs. A Fourier transformation-based temporal integration (FTTI) scheme is proposed, which adapts the conventional FE method for modeling the viscoplastic deterioration in a structure subjected to cyclic loading. The response fields are represented by a Fourier series which assumes a temporal scale separation: a microchronological (short time) scale arises from the oscillatory loading and a macrochronological (long time) scale is due to the slow material relaxation resulting from yielding and damage evolution. The original dynamic boundary value problem (BVP) is approximated by the stationary BVP on the microchronological scale. Alternation of the displacement field on the macrochronological scale is correlated with evolution of the history variables by means of a high order adaptive cycle jump method. Performance and significant acceleration of the FE simulations is demonstrated at different loading scenarios for a constitutive damage model where the progressive damage accumulation is driven by viscoplastic yielding. KW - Fatigue KW - Accelerated time integration KW - Continuum damage mechanics KW - Fourier series PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2017.03.015 SN - 0142-1123 SN - 1879-3452 VL - 100 IS - 1 SP - 215 EP - 228 PB - Elsevier Ltd. AN - OPUS4-39616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fedelich, Bernard A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Experimental and analytical investigation of the TMF-HCF lifetime behavior of two cast iron alloys N2 - The combined loading Thermomechanical Fatigue (TMF) with High Cycle Fatigue (HCF) has been experimentally investigated for two cast iron alloys. Both alloys contain globular graphite nodules but the first one has a ferritic structure while the second one has an austenitic crystal structure. In particular, the influences of the HCF frequency, of the HCF loading amplitude and of the location of the superposed HCF cycles have been investigated. It was observed that the HCF frequency has a limited impact on the fatigue life. On the other side, the HCF-strain amplitude has a highly non-linear influence on the fatigue life. The experimental results can be understood in terms of a fracture mechanics based damage mechanism: Cracks quickly initiate due to the TMF loading and the growth of the cracks up to a few mm controls the fatigue life. If HCF-loading cycles are superposed, cyclic crack propagation dramatically accelerates after a threshold has been reached. This threshold is regarded as controlling the fatigue life reduction. The previous ideas have been expressed in a model that can be very simply applied to estimate the fatigue life reduction ratio due to the superposed HCF cycles. It only contains two adjustable parameters and can be combined with any TMF life assessment model. T2 - 3rd International Workshop on Thermo-Mechanical Fatigue (TMF-Workshop 2016) CY - Berlin, Germany DA - 27.04.2016 KW - Thermomechanical Fatigue (TMF) KW - High Cycle Fatigue (HCF) KW - Cast iron KW - Fatigue assessment PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2016.11.013 SN - 0142-1123 SN - 1879-3452 VL - 99 IS - 2 (Special issue: Recent developments in thermo-mechanical fatigue) SP - 266 EP - 278 PB - Elsevier CY - Oxford AN - OPUS4-39810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuerlein, C. A1 - Uhlemann, Patrick A1 - Finn, Monika A1 - Lackner, F. A1 - Savary, F. T1 - Mechanical properties of the HL-LHC 11 T Nb3Sn magnet constituent materials N2 - A test campaign was launched to determine the mechanical properties of the High Luminosity-Large HadronCollider (HL-LHC) 11 T Nb3Sn magnet components. The results can be used to accurately represent the mechanical properties in finite elementmodels that predict the stress and strain distribution in these magnets. Particular attention is paid to anisotropic mechanical behavior of the different magnet materials. Static and dynamic test methods have been applied for determining elastic materials’ behavior, and highly accurate Young’s moduli are obtained with the nondestructive dynamic methods resonance and impulse excitation at ambient temperature and during in situ heat cycles. KW - Superconducting magnets KW - Young’s modulus KW - Resonance testing KW - Stress-strain behavior PY - 2017 DO - https://doi.org/10.1109/TASC.2016.2638046 SN - 1051-8223 SN - 1558-2515 VL - 27 IS - 4 SP - 1 EP - 7 PB - IEEE AN - OPUS4-39219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Thermomechanical fatigue of heat-resistant austenitic cast iron EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S) N2 - TMF tests were carried out on EN-GJSA-XNiSiCr35-5-2 at constant minimum temperature (400 °C) and varying maximum temperatures (Tmax = 700 °C, 800 °C, 900 °C) with hold times of 180 s at Tmax and two phase angles (in-phase (IP), 180° out-of-phase (OP)). The results showed a comparable strength under OP- and IP-TMF loading. At Tmax = 700 °C and 900 °C, the lifetime in IP-tests was slightly longer than that of OP-tests, while it is vice versa at Tmax = 800 °C. The IP-tests at Tmax = 900 °C showed a similar lifetime as OP-tests at Tmax = 700 °C and 800 °C, which was unexpected for such a high testing temperature. All IP-tests at Tmax = 900 °C showed a continuous cyclic softening from the beginning on, which was different from all other testing conditions. Complementary metallographic investigations indicated that under this test condition, intergranular creep damage is present in the volume of the test pieces. T2 - 3rd International Workshop on Thermo-Mechanical Fatigue (TMF-Workshop 2016) CY - Berlin, Germany DA - 27.04.2016 KW - Cast iron KW - Cracks KW - Cyclic softening KW - Microscopy KW - Thermomechanical fatigue PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2017.01.009 SN - 0142-1123 SN - 1879-3452 VL - 99 IS - 2 (Special issue: Recent developments in thermo-mechanical fatigue) SP - 295 EP - 302 PB - Elsevier CY - Oxford AN - OPUS4-39680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omara, Shereen Shabaan A1 - Turky, G. A1 - Ghoneim, A. A1 - Thünemann, Andreas A1 - Abdel Rehim, M. H. A1 - Schönhals, Andreas T1 - Hyperbranched poly(amidoamine)/kaolinite nanocomposites: Structure and charge carrier dynamics N2 - An ex-situ approach was applied to prepare nanocomposites from hyperbranched poly(amidoamine) and modified kaolinite (Ka-DCA). The structure of the polymer and the corresponding nanocomposites was investigated by FTIR, DSC, SAXS and TEM. SAXS might suggest a partly exfoliated structure of the nanocomposites, which was supported by TEM. The molecular dynamics was studied by means of broadband dielectric spectroscopy (BDS). The dielectric spectra are dominated by a conductivity contribution at higher temperatures for all samples investigated. The obtained results further indicated that DC conductivity is increased by 4 orders of magnitude with increasing concentration of Ka-DCA nanofiller. Further, a significant separation between the conductivity relaxation time and that of segmental dynamics was observed. The decoupling phenomenon and the conductivity mechanism were discussed in detail. This study provides insights about the influence of the nanofiller on the structure and the conductivity contribution of nanocomposites of hyperbranched polymers including the decoupling phenomenon and fragility. KW - Hyperbranched polymers KW - Nanocomposites KW - Conductivity PY - 2017 DO - https://doi.org/10.1016/j.polymer.2017.06.017 SN - 0032-3861 VL - 121 SP - 64 EP - 74 PB - Elsevier Ltd. AN - OPUS4-40648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juling, S. A1 - Niedzwiecka, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Selve, S. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Krause, E. A1 - Lampen, A. T1 - Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects N2 - The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment. KW - Silver nanoparticles KW - Protein KW - Small-angle X-ray scattering KW - SAXS PY - 2017 DO - https://doi.org/10.1021/acs.jproteome.7b00412 SN - 1535-3893 SN - 1535-3907 VL - 16 IS - 11 SP - 4020 EP - 4034 PB - Americal Chemical Society AN - OPUS4-42688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lichtenstein, D. A1 - Meyer, T. A1 - Böhmert, L. A1 - Juling, S. A1 - Fahrenson, C. A1 - Selve, S. A1 - Thünemann, Andreas A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Braeuning, A. A1 - Lampen, A. T1 - Dosimetric quantification of coating-related uptake of silver nanoparticles N2 - The elucidation of mechanisms underlying the cellular uptake of nanoparticles (NPs) is an important topic in nanotoxicological research. Most studies dealing with silver NP uptake provide only qualitative data about internalization efficiency and do not consider NP-specific dosimetry. Therefore, we performed a comprehensive comparison of the cellular uptake of differently coated silver NPs of comparable size in different human intestinal Caco-2 cell-derived models to cover also the influence of the intestinal mucus barrier and uptake-specialized M-cells. We used a combination of the Transwell system, transmission electron microscopy, atomic absorption spectroscopy, and ion beam microscopy techniques. The computational in vitro sedimentation, diffusion, and dosimetry (ISDD) model was used to determine the effective dose of the particles in vitro based on their individual physicochemical characteristics. Data indicate that silver NPs with a similar size and shape show coating-dependent differences in their uptake into Caco-2 cells. The internalization of silver NPs was enhanced in uptake-specialized M-cells while the mucus did not provide a substantial barrier for NP internalization. ISDD modeling revealed a fivefold underestimation of dose–response relationships of NPs in in vitro assays. In summary, the present study provides dosimetry-adjusted quantitative data about the influence of NP coating materials in cellular uptake into human intestinal cells. Underestimation of particle effects in vitro might be prevented by using dosimetry models and by considering cell models with greater proximity to the in vivo situation, such as the M-cell model. KW - Silver nanoparticles KW - Small-angle X-ray scattering KW - Saxs PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b01851 SN - 0743-7463 VL - 33 IS - 45 SP - 13087 EP - 13097 PB - Americal Chemical Society AN - OPUS4-42875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Kang, Nianjun A1 - Wang, De-Yi A1 - Falkenhagen, Jana A1 - Thünemann, Andreas A1 - Schönhals, Andreas T1 - Structure–Property Relationships of Nanocomposites Based on Polylactide and Layered Double Hydroxides – Comparison of MgAl and NiAl LDH as Nanofiller N2 - Nanocomposites based on poly(L-lactide) (PLA) and organically modified Ni/Al layered double hydroxides (NiAl/LDHs) are prepared by melt blending and investigated by a combination of size exclusion chromatography, differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), wide-angle X-ray scattering, and broadband dielectric spectroscopy. A detailed comparison to the behavior of the corresponding MgAl/LDH–PLA nanocomposites is made. SAXS investigations show that the morphology of the NiAl/LDH–PLA nanocomposites is more intercalated compared to the MgAl/LDH based PLA nanocomposite, which is more exfoliated. The DSC investigation gives a different dependence of the degree of crystallization on the concentration of LDH for NiAl/LDH–PLA than for MgAl/LDH–PLA nanocomposite system. These differences are discussed taking the differences of the morphologies of both systems into account. Broadband dielectric spectroscopy reveals information about the molecular dynamics where essential differences are observed for all relaxation processes taking place in both systems which were related to the different morphologies. KW - Nanocomposites KW - Polylactide PY - 2017 DO - https://doi.org/10.1002/macp.201700232 SN - 1022-1352 SN - 1521-3935 VL - 218 IS - 20 SP - Article 1700232, 1 EP - 12 PB - Wiley-VCH Verlag AN - OPUS4-42597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Kästner, Claudia A1 - Krause, B. A1 - Meyer, T. A1 - Burel, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Estreal-Lopis, I. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Luch, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Impact of an artificial digestion procedure on aluminum-containing nanomaterials N2 - Aluminum has gathered toxicological Attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or Food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Smallangle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the singleparticle mode were employed to characterize two aluminumcontaining nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong Agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b02729 SN - 1520-5827 SN - 0743-7463 VL - 33 IS - 40 SP - 10726 EP - 10735 PB - Americal Chemical Society AN - OPUS4-42438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lichtenstein, D. A1 - Ebmeyer, J. A1 - Meyer, T. A1 - Behr, A.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Juling, J. A1 - Niemann, B. A1 - Fahrenson, C. A1 - Selve, S. A1 - Thünemann, Andreas A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Bräuning, A. A1 - Lampen, A. T1 - It takes more than a coating to get nanoparticles through the intestinal barrier in vitro N2 - Size and shape are crucial parameters which have impact on the potential of nanoparticles to penetrate cell membranes and epithelial barriers. Current research in nanotoxicology additionally focuses on particle coating. To distinguish between core- and coating-related effects in nanoparticle uptake and translocation, two nanoparticles equal in size, coating and charge but different in core material were investigated. Silver and iron oxide nanoparticles coated with poly(acrylic acid) were chosen and extensively characterized by small-angle x-ray scattering, nanoparticle tracing analysis and transmission electron microscopy (TEM). Uptake and transport were studied in the intestinal Caco-2 model in a Transwell System with subsequent elemental analysis. TEM and ion beam microscopy were conducted for particle visualization. Although equal in size, charge and coating, the behavior of the two particles in Caco-2 cells was different: while the internalized amount was comparable, only iron oxide nanoparticles additionally passed the epithelium. Our findings suggest that the coating material influenced only the uptake of the nanoparticles whereas the translocation was determined by the core material. Knowledge about the different roles of the particle coating and core materials in crossing biological barriers will facilitate toxicological risk assessment of nanoparticles and contribute to the optimization of pharmacokinetic properties of nano-scaled pharmaceuticals. KW - Silver KW - Nanoparticle KW - Polymer KW - Polyacrylic acid PY - 2017 DO - https://doi.org/10.1016/j.ejpb.2016.12.004 SN - 0939-6411 SN - 1873-3441 VL - 118 SP - 21 EP - 29 PB - Elsevier AN - OPUS4-41170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, P A1 - Balceris, C. A1 - Ludwig, F A1 - Posth, O A1 - Bogart, L. K. A1 - Szczerba, Wojciech A1 - Castro, A A1 - Nilsson, L A1 - Costo, R A1 - Gavilan, H A1 - Gonzalez-Alonso, D A1 - de Pedro, I A1 - Barquin, L. F. A1 - Johansson, C T1 - Distribution functions of magnetic nanoparticles determined by a numerical inversion method N2 - In the present study, we applied a regularized inversion method to extract the particle size, magnetic moment and relaxation-time distribution of magnetic nanoparticles from small-angle x-ray scattering (SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. For the measurements the particles were colloidally dispersed in water. At first approximation the particles could be assumed to be spherically shaped and homogeneously magnetized single-domain particles. As model functions for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and the Debye model (ACS). The extracted distributions exhibited features/peaks that could be distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis of these peaks enabled, in combination with a prior characterization of the particle ensemble by electron microscopy and dynamic light scattering, a detailed structural and magnetic characterization of the particles. Additionally, all three extracted distributions featured peaks, which indicated deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one expected for individually dispersed, homogeneously magnetized nanoparticles. These deviations could be mainly attributed to partial agglomeration (SAXS, DCM, ACS), uncorrelated surface spins (DCM) and/or intra-well relaxation processes (ACS). The main advantage of the numerical inversion method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions are required, which enabled the detection of these contributions. We highlighted this by comparing the results with the results obtained by standard model fits, where the functional form of the distributions was a priori assumed to be log-normal shaped. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-429373 DO - https://doi.org/10.1088/1367-2630/aa73b4 SN - 1367-2630 VL - 19 SP - 073012, 1 EP - 073012, 19 PB - IOP Publ. Ltd. AN - OPUS4-42937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Terril, N. J. A1 - Thünemann, Andreas T1 - The modular small-angle X-ray scattering data correction sequence N2 - Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors. KW - Small-angle X-ray scattering KW - SAXS KW - Accuracy KW - Methodology KW - Data correction PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432114 DO - https://doi.org/10.1107/S1600576717015096 SN - 1600-5767 VL - 50 IS - 6 SP - 1800 EP - 1811 PB - International Union of Crystallography AN - OPUS4-43211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison N2 - This paper presents the first worldwide inter-laboratory comparison of small-angle X-ray scattering (SAXS) for nanoparticle sizing. The measurands in this comparison are the mean particle radius, the width of the size distribution and the particle concentration. The investigated sample consists of dispersed silver nanoparticles, surrounded by a stabilizing polymeric shell of poly(acrylic acid). The silver cores dominate the X-ray scattering pattern, leading to the determination of their radius size distribution using (i) the generalized indirect Fourier transformation method, (ii) classical model fitting using SASfit and (iii) a Monte Carlo fitting approach using McSAS. The application of these three methods to the collected data sets from the various laboratories produces consistent mean number- and volume-weighted core radii of Rn = 2.76 (6) nm and Rv = 3.20 (4) nm, respectively. The corresponding widths of the lognormal radius distribution of the particles were σn = 0.65 (1) nm and σv = 0.71 (1) nm. The particle concentration determined using this method was 3.0 (4) g l−1 or 4.2 (7) × 10−6 mol l−1. These results are affected slightly by the choice of data evaluation procedure, but not by the instruments: the participating laboratories at synchrotron SAXS beamlines, commercial and in-house-designed instruments were all able to provide highly consistent data. This demonstrates that SAXS is a suitable method for revealing particle size distributions in the sub-20 nm region (at minimum), out of reach for most other analytical methods. KW - SAXS KW - Small-angle X-ray scattering KW - Silver nanoparticles PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-422800 DO - https://doi.org/10.1107/S160057671701010X SN - 1600-5767 VL - 50 IS - 5 SP - 1280 EP - 1288 PB - (IUCr) International Union of Crystallography AN - OPUS4-42280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szczerba, Wojciech A1 - Costo, R. A1 - Veintemillas-Verdaguer, S. A1 - del Puerto Morales, M. A1 - Thünemann, Andreas T1 - SAXS analysis of single- and multi-core iron oxide magnetic nanoparticles N2 - This article reports on the characterization of four superparamagnetic iron oxide nanoparticles stabilized with dimercaptosuccinic acid, which are suitable candidates for reference materials for magnetic properties. Particles p1 and p2 are single-core particles, while p3 and p4 are multi-core particles. Small-angle X-ray scattering analysis reveals a lognormal type of size distribution for the iron oxide cores of the particles. Their mean radii are 6.9 nm (p1), 10.6 nm (p2), 5.5 nm (p3) and 4.1 nm (p4), with narrow relative distribution widths of 0.08, 0.13, 0.08 and 0.12. The cores are arranged as a clustered network in the form of dense mass fractals with a fractal dimension of 2.9 in the multi-core particles p3 and p4, but the cores are well separated from each other by a protecting organic shell. The radii of gyration of the mass fractals are 48 and 44 nm, and each network contains 117 and 186 primary particles, respectively. The radius distributions of the primary particle were confirmed with transmission electron microscopy. All particles contain purely maghemite, as shown by X-ray absorption fine structure spectroscopy KW - Superparamagnetic nanoparticles KW - Iron oxide KW - Reference materials KW - SAXS KW - Small-angle x-ray scattering KW - XANES KW - X-ray absorption near-edge structure KW - X-ray absorption fine structure PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395948 DO - https://doi.org/10.1107/S1600576717002370 SN - 1600-5767 VL - 50 IS - Part 2 SP - 481 EP - 488 PB - (IUCr) International Union of Crystallography AN - OPUS4-39594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Lichtenstein, Dajana A1 - Lampen, Alfonso A1 - Thünemann, Andreas T1 - Monitoring the fate of small silver nanoparticles during artificial digestion N2 - The report on the results of an in vitro digestion study of silver nanoparticles in presence and absenceof food. The particles were poly(acrylic acid) stabilized ultra-small silver nanoparticles with a radius of 3.1 nm and a relative size distribution width of 0.2. As food components oil, starch, skimmed milk powderand a mixture thereof were chosen. Aggregation of the particles was quantified with small-angle X-rayscattering in terms of log-normal radii distributions. Complete aggregation of the primary particles wasdetermined in the absence of food. In contrast, the presence of oil and starch initiates a disaggregationin the intestine. Only small aggregates of 6 nm radii and aggregation numbers of 7 were found in thepresence of milk powder. It prevents primary particles from etching in the gastric and intestinal juice.Our results indicate that the silver nanoparticles can pass the digestion process in a nanoscale form butundergo a strong and food-dependent transformation in their state of aggregation. KW - Small-angle X-ray scattering KW - SAXS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404099 DO - https://doi.org/10.1016/j.colsurfa.2016.08.013 SN - 0927-7757 SN - 1873-4359 VL - 526 SP - 76 EP - 81 PB - Elsevier B.V. AN - OPUS4-40409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mirtschin, Nikolaus A1 - Pretsch, T. T1 - Programming of one- and two-step stress recovery in a poly(ester urethane) N2 - This work demonstrates that phase-segregated poly(ester urethane) (PEU) with switching segments of crystallizable poly(1,4-butylene adipate) (PBA) can be programmed to generate two separate stress recovery events upon heating under constant strain conditions. For programming, two elongations are applied at different temperatures, followed by unloading and cooling. During the adjacent heating, two-step stress recovery is triggered. The results indicate that the magnitude of the stress recovery signals corresponds to the recovery of the two deformation stresses in reverse order. As demonstrated by further experiments, twofold stress recovery can be detected as long as the elongation at higher temperature exceeds the strain level of the deformation at lower temperature. Another finding includes that varying the lower deformation temperature enables a control over the stress recovery temperature and thus the implementation of so-called “temperature-memory effects”. Moreover, exerting only one elongation during programming enables a heating-initiated one-step stress recovery close to the deformation temperature. Based on these findings, such polymers may offer new technological opportunities in the fields of active assembly when used as fastening elements and in functional clothing when utilized for compression stockings. KW - DSC KW - Mechanical properties PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-393585 DO - https://doi.org/10.3390/polym9030098 SN - 2073-4360 VL - 9 IS - 3 SP - Article 98, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-39358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mull, Birte A1 - Möhlmann, L. A1 - Wilke, Olaf T1 - Photocatalytic degradation of toluene, butyl acetate and limonene under UV and visible light with titanium dioxide-graphene oxide as photocatalyst N2 - Photocatalysis is a promising technique to reduce volatile organic compounds indoors. Titanium dioxide (TiO2) is a frequently-used UV active photocatalyst. Because of the lack of UV light indoors, TiO2 has to be modified to get its working range shifted into the visible light spectrum. In this study, the photocatalytic degradation of toluene, butyl acetate and limonene was investigated under UV LED light and blue LED light in emission test chambers with catalysts either made of pure TiO2 or TiO2 modified with graphene oxide (GO). TiO2 coated with different GO amounts (0.75%–14%) were investigated to find an optimum ratio for the photocatalytic degradation of VOC in real indoor air concentrations. Most experiments were performed at a relative humidity of 0% in 20 L emission test chambers. Experiments at 40% relative humidity were done in a 1 m³ emission test chamber to determine potential byproducts. Degradation under UV LED light could be achieved for all three compounds with almost all tested catalyst samples up to more than 95%. Limonene had the highest degradation of the three selected volatile organic compounds under blue LED light with all investigated catalyst samples. KW - Photocatalysis KW - Emission test chamber KW - Volatile organic compound KW - VOC KW - Degradation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-402955 DO - https://doi.org/10.3390/environments4010009 SN - 2076-3298 VL - 4 IS - 1 SP - Article 9, 1 EP - 9 PB - MDPI CY - Basel AN - OPUS4-40295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg A1 - Altmann, Korinna A1 - Wettmarshausen, Sascha A1 - Hidde, Gundula T1 - Coating of carbon fibers with adhesion-promoting thin polymer layers using plasma polymerization or electrospray ionization technique—A comparison N2 - Plasma polymers and electrospray-ionization (ESI) polymer layers are compared for most efficient adhesion promotion in carbon fiber-epoxy resin composites. The ultra-thin ESI layers (2–30 nm) of commercial poly(acrylic acid) and poly-(hydroxyethylmethacrylate) produce an significant increase of adhesion measured by single-fiber pull out tests. However, plasma Treatment has also advantages, such as simultaneous activation of the fiber substrate. Chemical structure and composition are rather far from the regular structure of commercial polymers as deposited by ESI processing. KW - Plasma polymers KW - Electrospray ionization polymers KW - Poly(acrylic acid) KW - Poly- (hydroxyethylmethacrylate) PY - 2017 DO - https://doi.org/10.1002/ppap.201600074 SN - 1612-8869 SN - 1612-8850 VL - 14 IS - 3 SP - e1600074-1 EP - 14 AN - OPUS4-40510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, M. S. S. A1 - Schartel, Bernhard A1 - Magalhães, F. D. A1 - Pereira, C. M. C. T1 - The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites N2 - The effectiveness of distinct fillers, from micro to nano-size scaled, on the fire behaviour of an epoxy resin and its carbon fibre reinforced composites was assessed by cone calorimetry. The performance was compared not only regarding the reaction to fire performance, but also in terms of thermal stability, glass transition temperature and microstructure. Regarding the fire reaction behaviour of nanofilled epoxy resin, anionic nanoclays and thermally oxidized carbon nanotubes showed the best results, in agreement with more compact chars formed on the surface of the burning polymer. For carbon fibre reinforced composite plates, the cone calorimeter results of modified resin samples did not show significant improvements on the heat release rate curves. Poorly dispersed fillers in the resin additionally caused reductions on the glass transition temperature of the composite materials. KW - Epoxy resin KW - Carbon fibre reinforced composite KW - Nanoclays KW - Carbon nanotubes KW - Flame retardants PY - 2017 DO - https://doi.org/10.1002/fam.2370 SN - 1099-1018 SN - 0308-0501 VL - 41 IS - 2 SP - 111 EP - 130 PB - Wiley & Sons, Ltd. AN - OPUS4-39085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Böhning, Martin A1 - Krafft, Bernd A1 - Schartel, Bernhard T1 - Chlorbutylkautschuk/Multilayergraphen-Nanocomposites N2 - In den letzten Jahren werden zunehmend Nanopartikel als Füllstoff für Polymere vorgeschlagen und auch erfolgreich in Elastomer-Nanocomposites eingesetzt. In dieser Arbeit wird Multilayergraphen (MLG) als Nanofüllstoff näher untersucht, der sich bereits bei geringen Konzentrationen als effizient erweist. MLG besteht aus nur etwa zehn Graphenlagen. Chlorbutylkautschuk (CIIR)/MLG-Nanocomposites mit verschiedenen MLG-Gehalten wurden mit Hilfe eines ultraschallunterstützen Mischverfahrens in Lösung hergestellt und auf einem Walzwerk weiterverarbeitet. Das Einmischen von MLG führt zu einer deutlichen Verbesserung der rheologischen und mechanischen Eigenschaften, des Vernetzungsverhaltens sowie der Barrierewirkung gegenüber Gasen. Bereits der Zusatz von 3 phr MLG zu CIIR führt zu einem mehr als zweifach höheren E-Modul und zu einer Reduktion der Permeabilität von O2 und CO2 um 30 %. Höhere Konzentrationen an Nanofüllstoff resultieren in einer weiteren Verbesserung der Eigenschaften der Nanocomposites. Weiterhin zeigten die CIIR/MLG-Nanocomposites auch eine geringere Entflammbarkeit. KW - Elastomere KW - Nanokomposite KW - Graphen KW - Chlorbutylkautschuk PY - 2017 SN - 0176-1625 VL - 70 IS - 5 SP - 311 EP - 322 PB - Dr. Gupta Verlag CY - Ratingen AN - OPUS4-40327 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Interactions of polysaccharide stabilising agents with early cement hydration without and in the presence of superplasticizers N2 - Polysaccharides are incorporated into cement based Systems in order to modify the rheological properties. Typically, cellulose ethers, sphingan gums, guar gum or starch ethers are applied. Depending upon their chemistry, molecular architecture, and adsorption tendency, polysaccharides interact differently with the entire cementitious system. Some stabilising agents like diutan gum mainly affect the cementitious paste; other stabilising agents like starch tend to interact with the sand fraction and even with the coarse aggregates. Cellulose and guar gum shows more diverse performances. Typically stabilising admixtures like polysaccharides are used, when sophisticated rheological properties are adjusted. Therefore, polysaccharides are often used in combination with superplasticisers, which are added to reduce the yield stress of concrete. This can cause interactions, particularly when the stabilising Agent shows a strong tendency to adsorb on particle surfaces. Adsorptive stabilising agents may reduce the amount of adsorbed superplasticisers, thus affecting both viscosity and yield stress, while non-adsorptive stabilising agents mainly affect the plastic viscosity independently of the superplasticiser. Due to the strong influence of superplasticisers on the yield stress, influences of the stabilising agent on the yield stress retreat into the background, so that their major effect is an increase of the plastic viscosity. The paper provides a comprehensive overview of how different polysaccharide superplasticisers affect cementitious flowable systems and points out the challenges of the combined use of polysaccharides and superplasticisers. Based on rheometric experiments and observations of the hydration process, time dependent effects on the workability as well as of the hydration of cement are presented and discussed. KW - Concrete KW - Polysaccharides KW - Rheology KW - Stabilising agents KW - Starch KW - Sphingan PY - 2017 DO - https://doi.org/10.1016/j.conbuildmat.2016.11.022 SN - 0950-0618 SN - 1879-0526 VL - 139 SP - 584 EP - 593 PB - Elsevier AN - OPUS4-40597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Silbernagl, Dorothee A1 - Toepel, J. A1 - Sturm, Heinz A1 - Broughton, William J. A1 - Sassaki, G. L. A1 - Gorbushina, Anna T1 - Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knufia petricola N2 - Melanised cell walls and extracellular polymeric matrices protect rock-inhabiting microcolonial fungi from hostile environmental conditions. How extracellular polymeric substances (EPS) perform this protective role was investigated by following development of the model microcolonial black fungus Knufia petricola A95 grown as a sub-aerial biofilm. Extracellular substances were extracted with NaOH/formaldehyde and the structures of two excreted polymers studied by methylation as well as NMR analyses. The main polysaccharide (~ 80%) was pullulan, also known as α-1,4-; α-1,6-glucan, with different degrees of polymerisation. Αlpha-(1,4)-linked-Glcp and α-(1,6)-linked-Glcp were present in the molar ratios of 2:1. A branched galactofuromannan with an α-(1,2)-linked Manp main chain and a β-(1,6)-linked Galf side chain formed a minor fraction (~ 20%). To further understand the roles of EPS in the weathering of minerals and rocks, viscosity along with corrosive properties were studied using atomic force microscopy (AFM). The kinetic viscosity of extracellular K. petricola A95 polysaccharides (≈ 0.97 × 10-6 m2 s-1) ranged from the equivalent of 2% (w/v) to 5% glycerine, and could thus profoundly affect diffusion-dominated processes. The corrosive nature of rock-inhabiting fungal EPS was also demonstrated by its effects on the aluminium coating of the AFM cantilever and the silicon layer below. KW - Corrosion KW - EPS KW - Melanised microcolonial fungi (MCF) KW - Pullulan KW - Sub-aerial biofilms (SAB) KW - α-1,4- and α-1,6-glucans KW - AFM cantilever vibration KW - Nanoviscosity KW - Nanocorrosion of aluminium and silicon PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435910 DO - https://doi.org/10.1007/s00792-017-0984-5 SN - 1433-4909 SN - 1431-0651 VL - 22 IS - 2 SP - 165 EP - 175 PB - Springer CY - Berlin AN - OPUS4-43591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Hahn, Marc Benjamin A1 - Solumon, Tihomir A1 - Strum, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine can enhance structural changes in DNA in vitro N2 - Strand breaks and conformational changes of DNA have consequences for the physiological role of DNA. The natural protecting molecule ectoine is beneficial to entire bacterial cells and biomolecules such as proteins by mitigating detrimental effects of environmental stresses. It was postulated that ectoine-like molecules bind to negatively charged spheres that mimic DNA surfaces. We investigated the effect of ectoine on DNA and whether ectoine is able to protect DNA from damages caused by ultraviolet radiation (UV-A). In order to determine different isoforms of DNA, agarose gel electrophoresis and atomic force microscopy experiments were carried out with plasmid pUC19 DNA. Our quantitative results revealed that a prolonged incubation of DNA with ectoine leads to an increase in transitions from supercoiled (undamaged) to open circular (single-strand break) conformation at pH 6.6. The effect is pH dependent and no significant changes were observed at physiological pH of 7.5. After UV-A irradiation in ectoine solution, changes in DNA conformation were even more pronounced and this effect was pH dependent. We hypothesize that ectoine is attracted to the negatively charge surface of DNA at lower pH and therefore fails to act as a stabilizing agent for DNA in our in vitro experiments. KW - Ectoine KW - DNA KW - UV radiation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-413139 DO - https://doi.org/10.1038/s41598-017-07441-z VL - 7 IS - 1 SP - Article 7170, 1 EP - 10 AN - OPUS4-41313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Meyer, Susann A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine protects DNA from damage by ionizing radiation N2 - Ectoine plays an important role in protecting biomolecules and entire cells against environmental stressors such as salinity, freezing, drying and high temperatures. Recent studies revealed that ectoine also provides effective protection for human skin cells from damage caused by UV-A radiation. These protective properties make ectoine a valuable compound and it is applied as an active ingredient in numerous pharmaceutical devices and cosmetics. Interestingly, the underlying mechanism resulting in protecting cells from radiation is not yet fully understood. Here we present a study on ectoine and its protective influence on DNA during electron irradiation. Applying gel electrophoresis and atomic force microscopy, we demonstrate for the first time that ectoine prevents DNA strand breaks caused by ionizing electron radiation. The results presented here point to future applications of ectoine for instance in cancer radiation therapy. KW - Plasmid DNA pUC19 KW - Electron irradiation 30 [kV] KW - Effective irradiation dose 0.2-16 [Gy] KW - Gel electrophoresis KW - AFM intermittent contact KW - Radioprotector ectoine KW - Compatible solute PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428287 DO - https://doi.org/10.1038/s41598-017-15512-4 SN - 2045-2322 VL - 7 IS - 1 SP - 15272, 1 EP - 15272, 7 PB - Nature AN - OPUS4-42828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Trappe, Volker A1 - Sturm, Heinz A1 - Braun, Ulrike A1 - Dümichen, Erik T1 - Cure conversion of structural epoxies by cure state analysis and in situ cure kinetics using nondestructive NIR spectroscopy N2 - Non-isothermal heating rate kinetics was applied to two epoxy resin systems. In situ near-infrared (NIR) measurements were taken with a heatable NIR cell which allowed the cure to be monitored by characteristic absorption bands. An autocatalyzed reaction of the nth order was shown to describe the epoxy conversion curves. Differential Scanning Calorimetry (DSC) was used as a complementary method. The kinetic models developed by both NIR and DSC are in good accordance with experimental epoxy conversion in the in situ NIR setup for single and multiple cure temperature ramps. A linear calibration curve of the characteristic absorption bands of epoxy normalized to aromatic vibrations was introduced. The curing degree of structural epoxies that were cured according to an industrial temperature cure profile was determined by NIR using the calibration curve. The epoxy conversions of the structural components showed good agreement with the experimental in situ NIR. Several degrees of cure for structural specimens were evaluated by NIR and residual reaction enthalpy by DSC. We present the non-destructive NIR spectroscopy as an alternative to determine fast and non-destructive epoxy conversion, particularly suitable for high degrees of cure on structural components. KW - Epoxy resin KW - Curing kinetics KW - In situ near-infrared (NIR) spectroscopy KW - Differential scanning calorimetry (DSC) PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0040603117300205 DO - https://doi.org/10.1016/j.tca.2017.01.010 SN - 0040-6031 SN - 1872-762X VL - 650 SP - 8 EP - 17 PB - Elsevier B.V. AN - OPUS4-39123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lamiel, C. A1 - Lee, Y. R. A1 - Cho, M. H. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Enhanced electrochemical performance of nickel-cobalt-oxide@reduced graphene oxide//activated carbon asymmetric supercapacitors by the addition of a redox-active electrolyte N2 - Supercapacitors are an emerging energy-storage system with a wide range of potential applications. In this study, highly porous nickel-cobalt-oxide@reduced graphene oxide (Ni-Co-O@RGO-s) nanosheets were synthesized as an active material for supercapacitors using a surfactant-assisted microwave irradiation technique. The RGO-modified nanocomposite showed a larger specific area, better conductivity, and lower resistivity than the unmodified nanocomposite because the RGO facilitated faster ion diffusion/transport for improved redox activity. The synergistic effect of Ni-Co-O@RGO-s resulted in a high capacitance of 1903 F/g (at 0.8 A/g) in a mixed KOH/redox active K3Fe(CN)6 electrolyte. The asymmetric Ni-Co-O@RGO-s//AC supercapacitor device yielded a high energy density and power density of 39 Wh/kg and 7500 W/kg, respectively. The porous structure and combination of redox couples from both the electrode and electrolyte provided a highly synergistic effect, which improved the performance of the supercapacitor device. KW - Ni-Co oxide KW - Reduced graphene oxide KW - Nanocomposite KW - Supercapacitor PY - 2017 DO - https://doi.org/10.1016/j.jcis.2017.08.003 SN - 0021-9797 SN - 1095-7103 VL - 507 SP - 300 EP - 309 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-41284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mady, A. H. A1 - Baynosa, M. L. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Facile microwave-assisted green synthesis of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation N2 - Nanocomposites of Ag-ZnFe2O4@reduced graphene oxide (rGO) were synthesized using a one-pot microwave-assisted self-assembly method. The morphology and structure of the Ag-ZnFe2O4@rGO nanocomposites were characterized. The nanocomposites formed with 15.2 wt% rGO showed excellent adsorption properties and high photocatalytic activity for the degradation of methylene blue (MB), rhodamine B (RhB), and methyl orange (MO). The synergistic interactions between Ag, ZnFe2O4, and rGO decreased the aggregation of the nanoparticles (NPs) and increased the surface area, resulting in better absorption in both UV and visible light. Such a structure was helpful for separating the photoexcited electron-hole pairs and accelerating electron transfer. Electrochemical impedance spectroscopy (EIS) revealed a smaller resistance in the solid-state interface layer and charge transfer on the composite surface than that of the bare ZnFe2O4 NPs and ZnFe2O4@rGO nanocomposite. The Ag-ZnFe2O4@rGO nanocomposite could be recovered easily by a magnet and reused five times with no significant decrease in photocatalytic activity. The as-prepared Ag-ZnFe2O4@rGO nanocomposite catalyst could be applied to the removal of hard-to-degrade waste materials owing to its high efficiency in both UV and visible light and its excellent reusability. KW - nanoparticles KW - microwave synthesis KW - photocatalysis PY - 2017 DO - https://doi.org/10.1016/j.apcatb.2016.10.033 SN - 0926-3373 SN - 1873-3883 VL - 203 SP - 416 EP - 427 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-37962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina A1 - Wirth, Thomas A1 - Sturm, Heinz A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium N2 - The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ∼150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ∼200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Oxidation KW - Titanium KW - Auger electron spectroscopy PY - 2017 DO - https://doi.org/10.1063/1.4993128 SN - 0021-8979 VL - 122 IS - 10 SP - 104901, 1 EP - 9 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-41905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuma, Dirk A1 - Kumbhar, V. S. A1 - Lee, Y. R. A1 - Ra, C. S. A1 - Min, B.-K. A1 - Shim, J.-J. T1 - Modified chemical synthesis of MnS nanoclusters on nickel foam for high performance all-solid-state asymmetric supercapacitors N2 - Novel MnS nanoclusters were synthesized on nickel foam (NF) using a successive ionic layer adsorption and reaction (SILAR) method. MnS nanoclusters with different sizes were obtained by varying the number of deposition cycles. The crystal structure, chemical composition, and surface microstructure of the electrodes were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field Emission scanning electron microscopy, and high-resolution transmission electron microscopy. The electrochemical behavior of the MnS nanoclusters was examined by cyclic voltammetry, galvanostatic charge–discharge, cycling test, and electrochemical impedance spectroscopy. The MnS nanoclusters prepared with 90 SILAR cycles showed the best supercapacitance in a 6 M KOH aqueous electrolyte with a specific capacitance of 828 F/g at a scan rate of 5 mV/s and cycling stability of 85.2 % after 5000 charge–discharge cycles. Moreover, an asymmetric supercapacitor (ASC) was assembled with the as-prepared MnS electrode on NF as the positive electrode, hydrothermally prepared reduced graphene oxide (rGO) on NF as the negative electrode, and PVA–KOH gel as the electrolyte. The MnS@NF//rGO@NF ASC showed excellent electrochemical performance with maximum energy and power densities of 34.1 Wh/kg and 12.8 kW/kg, respectively. The ASC also showed a capacitive retention of 86.5 % after 2000 charge–discharge cycles, highlighting its practical application for energy storage. KW - Nanocluster KW - Electrochemical behavior KW - Asymmetric supercapacitor KW - Graphene oxide PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-403147 DO - https://doi.org/10.1039/c7ra00772h SN - 2046-2069 VL - 7 IS - 27 SP - 16348 EP - 16359 PB - The Royal Society of Chemistry CY - London AN - OPUS4-40314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Panne, Ulrich A1 - Falkenhagen, Jana T1 - Critical conditions for liquid chromatography of statistical copolymers: Functionality type and composition distribution characterization by UP-LCCC/ESI-MS N2 - Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOFMS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), Gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD. KW - Polymer KW - Liquid chromatography at critical conditions KW - ESI-TOF-MS PY - 2017 DO - https://doi.org/10.1021/acs.analchem.6b04064 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 3 SP - 1778 EP - 1786 AN - OPUS4-39240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Radnik, Jörg A1 - Schönhals, Andreas T1 - Unraveling the Dynamics of Nanoscopically Confined PVME in Thin Films of a Miscible PVME/PS Blend N2 - Broadband dielectric spectroscopy (BDS) was employed to investigate the glassy dynamics of thin films (7−200 nm) of a poly(vinyl methyl ether) (PVME)/polystyrene (PS) blend (50:50 wt %). For BDS measurements, nanostructured capacitors (NSCs) were employed, where films are allowed a free surface. This method was applied for film thicknesses up to 36 nm. For thicker films, samples were prepared between crossed electrode capacitors (CECs). The relaxation spectra of the films showed multiple processes. The first process was assigned to the α-relaxation of a bulklike layer. For films measured by NSCs, the rates of α-relaxation were higher compared to those of the bulk blend. This behavior was related to the PVME-rich free surface layer at the polymer/air interface. The second process was observed for all films measured by CECs (process X) and the 36 nm film measured by NSCs (process X2). This process was assigned to fluctuations of constraint PVME segments by PS. Its activation energy was found to be thickness-dependent because of the evidenced thickness dependency of the compositional heterogeneity. Finally, a third process with an activated temperature dependence was observed for all films measured by NSCs (process X1). It resembled the molecular fluctuations in an adsorbed layer found for thin films of pure PVME, and thus, it is assigned accordingly. This process undergoes an extra confinement because of frozen adsorbed PS segments at the polymer/substrate interface. To our knowledge, this is the first example where confinement-induced changes were observed by BDS for blend thin films KW - Thin Films KW - Broadband Dielectric Spectroscopy PY - 2017 DO - https://doi.org/10.1021/acsami.7b10572 SN - 1944-8244 VL - 9 IS - 42 SP - 37289 EP - 37299 PB - ACS Publications AN - OPUS4-42652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Hilgenberg, Kai T1 - Damage development and damage tolerance of structures manufactured by selective laser melting - a review N2 - The additive manufacturing technology of Selective Laser Melting (SLM) experiences a rapid development within an increasing marked of quite different application fields. The properties of SLM materials and structures are influenced by a number of tech-nological parameters such as the metal powder (particle size, homogeneity, cleanliness), the laser tool (power, beam diameter, pulse lengths), the scanning operation (speed, sequence and orientation of melting paths), parameters of the over-all equipment (design and preheating of the base plate, currents and turbulence in the protective gas atmosphere) and, last not least, the hatching strategy including the build-up direction of the structure with respect to the loading direction of the component. For the perspective use of SLM structures as load carrying, safety-relevant components the knowledge of their mechanical properties is necessary. It is essential to understand these in the context of the manufacturing-related features and at the back-ground of the basic characteristics of metallic materials: crystal lattice, microstructure and material defects. The paper provides an overview on factors which affect the mechanical parameters stiffness, strength, ductility, toughness, fatigue crack propagation and fatigue strength in the context of selective laser melting. T2 - FDMD 2017 CY - Lecco, Italy DA - 19.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-438511 DO - https://doi.org/10.1016/j.prostr.2017.11.071 SN - 2452-3216 VL - 7 SP - 141 EP - 148 PB - ScienceDirect CY - Lecco, Italy AN - OPUS4-43851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Rethmeier, Michael A1 - Steinhoff, K. T1 - Surface structuring by pulsed laser implantation N2 - Micrometric surface topologies are required for a wide range of technical applications. While lowered surface features have been used for many years to improve the tribological behavior of contacting surfaces, there are also other fields of application, where the potential of elevated surface features is known, e. g. for metal forming tools. However, the demand for a high wear resistance of these structures often inhibits an industrial application. A solution is offered by structuring techniques that use additional material. A promising approach is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This paper describes the potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces by means of microstructural and topological investigations. Afterwards, results of a wear test are given and different applications for this structuring technique are discussed. It can be shown that dome-shaped or ring-shaped structures on a micrometric scale can be produced with high hardness and wear resistance. KW - Laser implantation KW - Surface structuring PY - 2017 DO - https://doi.org/10.4028/www.scientific.net/MSF.879.750 SN - 0255-5476 SN - 1662-9752 VL - 879 SP - 750 EP - 755 PB - Trans Tech Publications AN - OPUS4-38263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -